|
Сибирские электронные математические известия, 2024, том 21, выпуск 2, страницы 1414–1425 DOI: https://doi.org/10.33048/semi.2024.21.089
(Mi semr1752)
|
|
|
|
Математическая логика, алгебра и теория чисел
On definable sets in some definably complete locally o-minimal structure
M. Berraho Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco
DOI:
https://doi.org/10.33048/semi.2024.21.089
Аннотация:
In this paper, we show that the Grothendieck ring of a definably complete locally o-minimal expansion of the set (not the field) of real numbers $\mathbb R$ is trivial. Afterwards, we will give a sufficient condition for which a definably complete locally o-minimal expansion of an ordered group has no nontrivial definable subgroups. In the last section, we study some sets that are definable in a definably complete locally o-minimal expansion of an ordered field. Finally, a decomposition theorem for a definable set into finite union of $\pi_L$-quasi-special $\mathcal{C}^r$ submanifolds is demonstrated.
Ключевые слова:
Definably complete, locally o-minimal structures, Grothendieck rings.
Поступила 17 января 2023 г., опубликована 23 декабря 2024 г.
Образец цитирования:
M. Berraho, “On definable sets in some definably complete locally o-minimal structure”, Сиб. электрон. матем. изв., 21:2 (2024), 1414–1425
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1752 https://www.mathnet.ru/rus/semr/v21/i2/p1414
|
| Статистика просмотров: |
| Страница аннотации: | 68 | | PDF полного текста: | 35 | | Список литературы: | 8 |
|