|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
A Variation of the $q$-Painlevé System with Affine Weyl Group Symmetry of Type $E_7^{(1)}$
Hidehito Nagao Department of Arts and Science, National Institute of Technology, Akashi College, Hyogo 674-8501, Japan
Аннотация:
Recently a certain $q$-Painlevé type system has been obtained from a reduction of the $q$-Garnier system. In this paper it is shown that the $q$-Painlevé type system is associated with another realization of the affine Weyl group symmetry of type $E_7^{(1)}$ and is different from the well-known $q$-Painlevé system of type $E_7^{(1)}$ from the point of view of evolution directions. We also study a connection between the $q$-Painlevé type system and the $q$-Painlevé system of type $E_7^{(1)}$. Furthermore determinant formulas of particular solutions for the $q$-Painlevé type system are constructed in terms of the terminating $q$-hypergeometric function.
Ключевые слова:
$q$-Painlevé system of type $E_7^{(1)}$; $q$-Garnier system; Padé method; $q$-hypergeometric function.
Поступила: 3 июля 2017 г.; в окончательном варианте 24 ноября 2017 г.; опубликована 10 декабря 2017 г.
Образец цитирования:
Hidehito Nagao, “A Variation of the $q$-Painlevé System with Affine Weyl Group Symmetry of Type $E_7^{(1)}$”, SIGMA, 13 (2017), 092, 18 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1292 https://www.mathnet.ru/rus/sigma/v13/p92
|
|