|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems
Anatolij K. Prykarpatskiab a Ivan Franko State Pedagogical University of Drohobych, Lviv Region, Ukraine
b The Department of Physics, Mathematics and Computer Science,
Cracow University of Technology, Kraków 30-155, Poland
Аннотация:
In this letter I analyze a covering jet manifold scheme, its relation to the invariant theory of the associated vector fields, and applications to the Lax–Sato-type integrability of nonlinear dispersionless differential systems. The related contact geometry linearization covering scheme is also discussed. The devised techniques are demonstrated for such nonlinear Lax–Sato integrable equations as Gibbons–Tsarev, ABC, Manakov–Santini and the differential Toda singular manifold equations.
Ключевые слова:
covering jet manifold; linearization; Hamilton–Jacobi equations; Lax–Sato representation; ABC equation; Gibbons–Tsarev equation; Manakov–Santini equation; contact geometry; differential Toda singular manifold equations.
Поступила: 22 января 2018 г.; в окончательном варианте 28 февраля 2018 г.; опубликована 16 марта 2018 г.
Образец цитирования:
Anatolij K. Prykarpatski, “On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems”, SIGMA, 14 (2018), 023, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1322 https://www.mathnet.ru/rus/sigma/v14/p23
|
|