|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Supersingular Elliptic Curves and Moonshine
Victor Manuel Arichetaab a Department of Mathematics, Emory University, Atlanta, GA 30322, USA
b Institute of Mathematics, University of the Philippines,
Diliman 1101, Quezon City, Philippines
Аннотация:
We generalize a theorem of Ogg on supersingular $j$-invariants to supersingular elliptic curves with level. Ogg observed that the level one case yields a characterization of the primes dividing the order of the monster. We show that the corresponding analyses for higher levels give analogous characterizations of the primes dividing the orders of other sporadic simple groups (e.g., baby monster, Fischer's largest group). This situates Ogg's theorem in a broader setting. More generally, we characterize, in terms of supersingular elliptic curves with level, the primes arising as orders of Fricke elements in centralizer subgroups of the monster. We also present a connection between supersingular elliptic curves and umbral moonshine. Finally, we present a procedure for explicitly computing invariants of supersingular elliptic curves with level structure.
Ключевые слова:
moonshine; modular curves; supersingular elliptic curves; supersingular polynomials.
Поступила: 30 сентября 2018 г.; в окончательном варианте 19 января 2019 г.; опубликована 29 января 2019 г.
Образец цитирования:
Victor Manuel Aricheta, “Supersingular Elliptic Curves and Moonshine”, SIGMA, 15 (2019), 007, 17 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1443 https://www.mathnet.ru/rus/sigma/v15/p7
|
|