|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations
Mats Vermeeren Institut für Mathematik, MA 7-1, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
Аннотация:
A pluri-Lagrangian structure is an attribute of integrability for lattice equations and for hierarchies of differential equations. It combines the notion of multi-dimensional consistency (in the discrete case) or commutativity of the flows (in the continuous case) with a variational principle. Recently we developed a continuum limit procedure for pluri-Lagrangian systems, which we now apply to most of the ABS list and some members of the lattice Gelfand–Dickey hierarchy. We obtain pluri-Lagrangian structures for many hierarchies of integrable PDEs for which such structures where previously unknown. This includes the Krichever–Novikov hierarchy, the double hierarchy of sine-Gordon and modified KdV equations, and a first example of a continuous multi-component pluri-Lagrangian system.
Ключевые слова:
continuum limits, pluri-Lagrangian systems, Lagrangian multiforms, multidimensional consistency.
Поступила: 20 ноября 2018 г.; в окончательном варианте 16 мая 2019 г.; опубликована 3 июня 2019 г.
Образец цитирования:
Mats Vermeeren, “A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations”, SIGMA, 15 (2019), 044, 35 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1480 https://www.mathnet.ru/rus/sigma/v15/p44
|
|