|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Twistor Theory of Dancing Paths
Maciej Dunajski Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
Аннотация:
Given a path geometry on a surface $\mathcal{U}$, we construct a causal structure on a four-manifold which is the configuration space of non-incident pairs (point, path) on $\mathcal{U}$. This causal structure corresponds to a conformal structure if and only if $\mathcal{U}$ is a real projective plane, and the paths are lines. We give the example of the causal structure given by a symmetric sextic, which corresponds on an ${\rm SL}(2,{\mathbb R})$-invariant projective structure where the paths are ellipses of area $\pi$ centred at the origin. We shall also discuss a causal structure on a seven-dimensional manifold corresponding to non-incident pairs (point, conic) on a projective plane.
Ключевые слова:
path geometry, twistor theory, causal structures.
Поступила: 14 января 2022 г.; в окончательном варианте 28 марта 2022 г.; опубликована 31 марта 2022 г.
Образец цитирования:
Maciej Dunajski, “Twistor Theory of Dancing Paths”, SIGMA, 18 (2022), 027, 13 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1821 https://www.mathnet.ru/rus/sigma/v18/p27
|
|