|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
An Askey–Wilson Algebra of Rank $2$
Wolter Groenevelt, Carel Wagenaar Delft Institute of Applied Mathematics, Technische Universiteit Delft, PO Box 5031, 2600 GA Delft, The Netherlands
Аннотация:
An algebra is introduced which can be considered as a rank $2$ extension of the Askey–Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{C}))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.
Ключевые слова:
Askey–Wilson algebra, $q$-Racah polynomials.
Поступила: 30 июня 2022 г.; в окончательном варианте 15 февраля 2023 г.; опубликована 5 марта 2023 г.
Образец цитирования:
Wolter Groenevelt, Carel Wagenaar, “An Askey–Wilson Algebra of Rank $2$”, SIGMA, 19 (2023), 008, 35 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1903 https://www.mathnet.ru/rus/sigma/v19/p8
|
|