|
A Note about Isotopy and Concordance of Positive Scalar Curvature Metrics on Compact Manifolds with Boundary
Alessandro Carlottoa, Chao Lib a Università di Trento, Dipartimento di Matematica, via Sommarive 14, 38123 Trento, Italy
b New York University – Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA
Аннотация:
We study notions of isotopy and concordance for Riemannian metrics on manifolds with boundary and, in particular, we introduce two variants of the concept of minimal concordance, the weaker one naturally arising when considering certain spaces of metrics defined by a suitable spectral “stability” condition. We develop some basic tools and obtain a rather complete picture in the case of surfaces.
Ключевые слова:
positive scalar curvature, isotopy, concordance, free boundary minimal surfaces.
Поступила: 3 июля 2023 г.; в окончательном варианте 31 января 2024 г.; опубликована 13 февраля 2024 г.
Образец цитирования:
Alessandro Carlotto, Chao Li, “A Note about Isotopy and Concordance of Positive Scalar Curvature Metrics on Compact Manifolds with Boundary”, SIGMA, 20 (2024), 014, 13 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma2016 https://www.mathnet.ru/rus/sigma/v20/p14
|
|