|
Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds
Noriaki Ikeda Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Аннотация:
We consider higher generalizations of both a (twisted) Poisson structure and the equivariant condition of a momentum map on a symplectic manifold. On a Lie algebroid over a (pre-)symplectic and (pre-)multisymplectic manifold, we introduce a Lie algebroid differential form called a compatible $E$-$n$-form. This differential form satisfies a compatibility condition, which is consistent with both the Lie algebroid structure and the (pre-)(multi)symplectic structure. There are many interesting examples such as a Poisson structure, a twisted Poisson structure and a twisted $R$-Poisson structure for a pre-$n$-plectic manifold. Moreover, momentum maps and momentum sections on symplectic manifolds, homotopy momentum maps and homotopy momentum sections on multisymplectic manifolds have this structure.
Ключевые слова:
Poisson geometry, Lie algebroid, multisymplectic geometry, higher structures.
Поступила: 13 ноября 2023 г.; в окончательном варианте 27 марта 2024 г.; опубликована 31 марта 2024 г.
Образец цитирования:
Noriaki Ikeda, “Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds”, SIGMA, 20 (2024), 025, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma2027 https://www.mathnet.ru/rus/sigma/v20/p25
|
|