|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
The Ising Model Coupled to 2D Gravity: Genus Zero Partition Function
Maurice Duitsa, Nathan Hayforda, Seung-Yeop Leeb a Department of Mathematics, Royal Institute of Technology (KTH), Stockholm, Sweden
b Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
Аннотация:
We compute the genus $0$ free energy for the $2$-matrix model with quartic interactions, which acts as a generating function for the Ising model's partition function on a random, $4$-regular, planar graph. This is consistent with the predictions of Kazakov and Boulatov on this model, as well as subsequent confirmation of this formula using combinatorial methods. We also provide a new parametric formula for the free energy and give a characterization of the phase space. Our analysis is based on a steepest descent Riemann–Hilbert analysis of the associated biorthogonal polynomials and the corresponding isomonodromic $\tau$-function. A key ingredient in the analysis is a parametrization of the spectral curve. This analysis lays the groundwork for the subsequent study of the multicritical point, which we will study in a forthcoming work.
Ключевые слова:
$2$-matrix model, Riemann–Hilbert analysis, asymptotic analysis, graphical enumeration, Ising model.
Поступила: 31 января 2025 г.; в окончательном варианте 3 сентября 2025 г.; опубликована 24 сентября 2025 г.
Образец цитирования:
Maurice Duits, Nathan Hayford, Seung-Yeop Lee, “The Ising Model Coupled to 2D Gravity: Genus Zero Partition Function”, SIGMA, 21 (2025), 079, 90 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma2195 https://www.mathnet.ru/rus/sigma/v21/p79
|
|