|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On the Degenerate Multiplicity of the $\mathrm{sl}_2$ Loop Algebra for the 6V Transfer Matrix at Roots of Unity
Tetsuo Deguchi Department of Physics, Faculty of Science, Ochanomizu University,
2-1-1 Ohtsuka, Bunkyo-Ku, Tokyo 112-8610, Japan
Аннотация:
We review the main result of cond-mat/0503564. The Hamiltonian of the XXZ spin chain and the transfer matrix of the six-vertex model has the $sl_2$ loop algebra symmetry if the $q$ parameter is given by a root of unity, $q_0^{2N}=1$, for an integer $N$. We discuss the dimensions of the degenerate eigenspace generated by a regular Bethe state in some sectors, rigorously as follows: We show that every regular Bethe ansatz eigenvector in the sectors is a highest weight vector and derive the highest weight $\bar d_k^{\pm}$, which leads to evaluation parameters $a_j$. If the evaluation parameters are distinct, we obtain the dimensions of the highest weight representation generated by the regular Bethe state.
Ключевые слова:
loop algebra; the six-vertex model; roots of unity representations of quantum groups; Drinfeld polynomial.
Поступила: 31 октября 2005 г.; в окончательном варианте 6 февраля 2006 г.; опубликована 17 февраля 2006 г.
Образец цитирования:
Tetsuo Deguchi, “On the Degenerate Multiplicity of the $\mathrm{sl}_2$ Loop Algebra for the 6V Transfer Matrix at Roots of Unity”, SIGMA, 2 (2006), 021, 10 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma49 https://www.mathnet.ru/rus/sigma/v2/p21
|
|