|
On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials
Valentyna A. Grozaa, Ivan I. Kachurykb a National Aviation University, 1 Komarov Ave., Kyiv, 03058 Ukraine
b Khmel'nyts'kyi National University, Khmel'nyts'kyi, Ukraine
Аннотация:
The dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$ correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$, when $s=q^{-1}$ and $s=q$, are directly connected with $q^{-1}$-Hermite polynomials. These connections are given in an explicit form. Using these relations, all extremal orthogonality relations for these special cases of polynomials $D_n^{(s)}(\mu(x;s)|q)$ are found.
Ключевые слова:
$q$-orthogonal polynomials; dual discrete $q$-ultraspherical polynomials; $q^{-1}$-Hermite polynomials; orthogonality relation.
Поступила: 14 февраля 2006 г.; в окончательном варианте 28 февраля 2006 г.; опубликована 16 марта 2006 г.
Образец цитирования:
Valentyna A. Groza, Ivan I. Kachuryk, “On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials”, SIGMA, 2 (2006), 034, 8 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma62 https://www.mathnet.ru/rus/sigma/v2/p34
|
|