|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction
Hongli Ana, Colin Rogersbc a College of Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
b School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
c Australian Research Council Centre of Excellence for Mathematics & Statistics of Complex Systems, School of Mathematics, The University of New South Wales, Sydney, NSW2052, Australia
Аннотация:
A $2+1$-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when $\gamma= 2$ to a nonlinear dynamical subsystem with underlying integrable Hamiltonian–Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov–Ray–Reid system.
Ключевые слова:
magnetogasdynamic system, elliptic vortex, Hamiltonian–Ermakov structure, Lax pair.
Поступила: 27 мая 2012 г.; в окончательном варианте 2 августа 2012 г.; опубликована 23 августа 2012 г.
Образец цитирования:
Hongli An, Colin Rogers, “A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction”, SIGMA, 8 (2012), 057, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma734 https://www.mathnet.ru/rus/sigma/v8/p57
|
|