Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 1992, том 33, номер 5, страницы 80–90 (Mi smj3269)  

Многообразия метабелевых про-$p$-групп

А. Н. Зубков
Аннотация: Доказано, что любое собственное подмногообразие многообразия всех метабелевых про-$p$-групп является либо подмногообразием конечной экспоненты, либо объединением многообразия конечной экспоненты, многообразия $A_{{p}^\alpha}A$ и конечного числа многообразий вида $N_c A_p\beta\wedge A^2$. Здесь $A$ и $A_{{p}^\alpha}$ – многообразия абелевых про-$p$-групп и абелевых про-$p$-групп периода $p^\alpha$ соответственно, $N_c$ – многообразие нильпотентных про-$p$-групп ступени нильпотентности не выше $c$.
Библиогр. 12.
Статья поступила: 28.11.1990
Англоязычная версия:
Siberian Mathematical Journal, 1992, Volume 33, Issue 5, Pages 816–825
DOI: https://doi.org/10.1007/BF00970989
Реферативные базы данных:
Тип публикации: Статья
УДК: 512.546.37
Образец цитирования: А. Н. Зубков, “Многообразия метабелевых про-$p$-групп”, Сиб. матем. журн., 33:5 (1992), 80–90; Siberian Math. J., 33:5 (1992), 816–825
Цитирование в формате AMSBIB
\RBibitem{Zub92}
\by А.~Н.~Зубков
\paper Многообразия метабелевых про-$p$-групп
\jour Сиб. матем. журн.
\yr 1992
\vol 33
\issue 5
\pages 80--90
\mathnet{http://mi.mathnet.ru/smj3269}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1197074}
\zmath{https://zbmath.org/?q=an:0783.20015}
\transl
\jour Siberian Math. J.
\yr 1992
\vol 33
\issue 5
\pages 816--825
\crossref{https://doi.org/10.1007/BF00970989}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:A1992KE81400007}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj3269
  • https://www.mathnet.ru/rus/smj/v33/i5/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025