Theoretical and Applied Mechanics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Theor. Appl. Mech.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Theoretical and Applied Mechanics, 2022, том 49, выпуск 1, страницы 29–48
DOI: https://doi.org/10.2298/TAM211101003V
(Mi tam111)
 

Modelling and stability analysis of the nonlinear system

Mitra Vesovića, Radoslav Radulovićb

a Department of Control Engineering, University of Belgrade, Belgrade, Serbia
b Department of Mechanical Engineering, University of Belgrade, Belgrade, Serbia
Список литературы:
Аннотация: The production industries have repeatedly combated the problem of system modelling. Successful control of a system depends mainly on the exactness of the mathematical model that predicts its dynamic. Different types of studies are very common in the complicated challenges involving the estimations and approximations in describing nonlinear machines are based on a variety of studies. This article examines the behaviour and stability of holonomic mechanical system in the the arbitrary parameter sets and functional configuration of forces. Differential equations of the behaviour are obtained for the proposed system on the ground of general mechanical theorems, kinetic and potential energies of the system. Lagrange's equations of the first and second kind are introduced, as well as the representation of the system in the generalized coordinates and in Hamilton's equations. In addition to the numerical calculations applied the system, the theoretical structures and clarifications on which all of the methods rely on are also presented. Furthermore, static equilibriums are found via two different approaches: graphical and numerical. Above all, stability of motion of undisturbed system and, later, the system that works under the action of an external disturbance was inspected. Finally, the stability of motion is reviewed through Lagrange–Dirichlet theorem, and Routh and Hurwitz criteria. Linearized equations are obtained from the nonlinear ones, and previous conclusions for the stability were proved.
Ключевые слова: applied mechanics, Hamiltonian function, holonomic system, nonlinear systems, stability of undisturbed and disturbed motion.
Финансовая поддержка Номер гранта
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije 451-03-9/2021-14/200105
OI174001
The research of the first author was supported by the Ministry of Education, Science and Technological Development of the The Republic of Serbia, under contract 451-03-9/2021-14/200105, from date 05/02/2021. This work of the second author was financially supported by the Ministry of Education, Science and Technological Development, Grant OI174001.
Поступила в редакцию: 01.11.2021
Принята в печать: 18.03.2022
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Mitra Vesović, Radoslav Radulović, “Modelling and stability analysis of the nonlinear system”, Theor. Appl. Mech., 49:1 (2022), 29–48
Цитирование в формате AMSBIB
\RBibitem{VesRad22}
\by Mitra~Vesovi{\'c}, Radoslav~Radulovi\'c
\paper Modelling and stability analysis of the nonlinear system
\jour Theor. Appl. Mech.
\yr 2022
\vol 49
\issue 1
\pages 29--48
\mathnet{http://mi.mathnet.ru/tam111}
\crossref{https://doi.org/10.2298/TAM211101003V}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tam111
  • https://www.mathnet.ru/rus/tam/v49/i1/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theoretical and Applied Mechanics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025