|
|
Уфимский математический журнал, 2025, том 17, выпуск 2, страницы 108–122
(Mi ufa732)
|
|
|
|
Nonlinear integrable lattices with three independent variables
I. T. Habibullin, A. R. Khakimova Institute of Mathematics, Ufa Federal Research Center, RAS,
Chernyshevsky str. 112, 450008, Ufa, Russia
Аннотация:
We suggest an algorithm for deriving nonlinear integrable equations of the form $$u^{j+1}_{n,x}=F(u^{j}_{n,x},u^{j+1}_{n},u^{j}_{n+1},u^{j}_{n},u^{j+1}_{n-1})$$ with three independent variables; the algorithm uses the known list of Toda type integrable equations. The algorithm is based on the Darboux integrable finite field reductions, construction of a complete set of characteristic integrals and dicretization via integrals.
Ключевые слова:
characteristic integrals, integrability in sense of Darboux, Lax pairs.
Поступила в редакцию: 06.02.2025
Образец цитирования:
I. T. Habibullin, A. R. Khakimova, “Nonlinear integrable lattices with three independent variables”, Уфимск. матем. журн., 17:2 (2025), 108–122; Ufa Math. J., 17:2 (2025), 105–119
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa732 https://www.mathnet.ru/rus/ufa/v17/i2/p108
|
|