|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
Amit Halder, Shyamal Debnath Tripura University (A Central University)
Аннотация:
The main aim of this paper is to present and explore some of properties of the concept of $\mathcal{I}$-statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of $\mathcal{I}$-statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We observe that, in complex uncertain space, every $\mathcal{I}$-statistically convergent sequence in measure is $\mathcal{I}$-statistically Cauchy sequence in measure, but the converse is not necessarily true.
Ключевые слова:
$\mathcal{I}$-convergence, $\mathcal{I}$-statistical convergence, Uncertainty theory, Complex uncertain variable
Образец цитирования:
Amit Halder, Shyamal Debnath, “$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure”, Ural Math. J., 10:2 (2024), 69–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj235 https://www.mathnet.ru/rus/umj/v10/i2/p69
|
|