|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Информатика
Мультимодальная ансамблевая нейросетевая система обнаружения рака кожи на основе анализа гетерогенных дерматологических данных
У. А. Ляхова, П. А. Ляхов Северо-Кавказский федеральный университет, Российская Федерация, 355017, Ставрополь, ул. Пушкина, 1
Аннотация:
В настоящее время рак кожи служит одной из ведущих причин смертности в мире. Его диагностика на ранних этапах имеет решающее значение для увеличения потенциальной выживаемости. Поэтому важна разработка высокоточных интеллектуальных систем вспомогательной диагностики для выявления рака кожи на ранних стадиях. Ансамблевое обучение — один из актуальных и перспективных методов повышения точности систем интеллектуальной классификации за счет уменьшения дисперсии и вариативности прогнозов отдельных составляющих общей системы. Представлена ансамблевая интеллектуальная система анализа гетерогенных дерматологических данных на основе мультимодальных нейронных сетей. Точность разработанной ансамблевой системы составила 85.92 %, что на 1.85 процентных пункта выше по сравнению со средней точностью отдельных мультимодальных архитектур для классификации гетерогенных дерматологических данных. Предложенная система может использоваться как высокоточный вспомогательный диагностический инструмент, помогающий принять медицинское решение, что позволит повысить шанс раннего выявления пигментных онкопатологий.
Ключевые слова:
мультимодальная нейронная сеть, ансамблевая нейронная сеть, машинное обучение, гетерогенные данные, дерматологические изображения, пигментные новообразования кожи, рак кожи, меланома.
Поступила: 2 октября 2023 г. Принята к печати: 12 марта 2024 г.
Образец цитирования:
У. А. Ляхова, П. А. Ляхов, “Мультимодальная ансамблевая нейросетевая система обнаружения рака кожи на основе анализа гетерогенных дерматологических данных”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 20:2 (2024), 231–243
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vspui621 https://www.mathnet.ru/rus/vspui/v20/i2/p231
|
|