|
|
Журнал вычислительной математики и математической физики, 2024, том 64, номер 5, статья опубликована в англоязычной версии журнала
(Mi zvmmf11762)
|
|
|
|
Статьи, опубликованные в английской версии журнала
Multizonal internal layers in a stationary piecewise–smooth reaction-diffusion equation in the case of the difference of multiplicity for the roots of the degenerate solution
Qian Yangab, Mingkang Nibc a College of Science, University of Shanghai for Science and Technology, 200093, Shanghai, China
b Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University
c School of Mathematical Sciences, East China Normal University, 200062, Shanghai, China
Аннотация:
A singularly perturbed stationary problem for a one-dimensional reaction-diffusion equation in the case when the degenerate equation has multiple roots is studied. This is a new class of problems with discontinuous reactive terms along some curve that is independent of the small parameter. The existence of a smooth solution with the transition from the triple root of one degenerate equation to the double root of the other degenerate equation in the neighborhood of some point on the discontinuous curve is studied. Based on the existence theorem of classical boundary value problems and the technique of matching asymptotic expansion, the existence of a smooth solution is proved. And the point itself and the asymptotic representation of this solution are constructed by the matching technique and modified boundary layer function method.
Ключевые слова:
reaction-diffusion equation, a triple root of the degenerate solution, asymptotic method, piecewise–smooth dynamical system.
Поступила в редакцию: 12.02.2022 Исправленный вариант: 21.11.2023 Принята в печать: 13.06.2024
Образец цитирования:
Qian Yang, Mingkang Ni, “Multizonal internal layers in a stationary piecewise–smooth reaction-diffusion equation in the case of the difference of multiplicity for the roots of the degenerate solution”, Comput. Math. Math. Phys., 64:5 (2024), 1130–1142
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf11762
|
|