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FOREWORD

The main goal of this course is to present basics of twistor geometry and its
applications to the solution of gauge field theory equations such as Yang–
Mills equations and so on.

Twistors were introduced by Roger Penrose who used them to describe so-
lutions of conformally invariant equations of field theory in Minkowski space.
The aim of his ”twistor program” was to employ the twistor correspondence
to associate with solutions of these equations some objects of complex an-
alytic geometry (such as sections of holomorphic bundles, cohomology with
coefficients in sheaves of holomorphic functions) in twistor space. As it was
remarked by Penrose himself, this program is in its essence close to the
Einstein’s idea underlying the general relativity theory. By this idea the
physical bodies in the metric, created by the gravity force of astronomical
objects, should move along geodesics. Roughly speaking, the equations of
gravity ”dissapear” , only Riemannian geometry remains. Similar to that,
we can say that, after switching to the twistor description, the conformally
invariant equations ”dissapear” and only complex geometry remains.

The first part of the course, devoted to the twistor geometry, starts from
the construction of the twistor model of Minkowski space and continues with
the description of twistor correspondence. This correspondence assigns to
geometric objects in Minkowski space the associated objects of complex ge-
ometry in twistor space. Along with twistor model we consider also the Klein
model of Minkowski space in which this space is identified with a quadric in
the 5-dimensional projective space CP5. Then we construct the twistor bun-
dles over arbitrary Riemannian manifolds of even dimension following well
known paper of Atiyah–Hitchin–Singer.

In the second part of the course the introduced twistor theory is applied
to the study of solutions of gauge field theory equations. As the first exam-
ple we consider the Yang–Mills duality equations in R4 and their solutions
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called instantons. Atiyah–Ward theorem yields the twistor interpretation of
instantons and Atiyah–Drinfeld–Hitchin–Manin construction, based on this
theorem, allows to describe completely the moduli space of instantons.

The next example of gauge field theory equations is provided by the
monopole equations in R3, called also Bogomolny equations. Their twistor
interpretation was proposed by Nahm.

Other examples are related to the two-dimensional models. As a first
model we consider the self-dual Yang–Mills–Higgs equations in R2, called oth-
erwise the vortex equations. The moduli space of their solutions is described
by the theorem of Taubes. Another example of two-dimensional models is
provided by Hitchin equations on Riemann surfaces. These equations are
closely related to the Higgs bundles given by the pairs (E,Φ) consisting of
a holomorphic vector bundle E and a holomorphic section Φ (Higgs field)
of the bundle of endomorphisms of E. The Hitchin–Kobayashi correspon-
dence establishes a relation between the stable Higgs bundles and solutions
of Hitchin equations.

In conclusion we deal with the two-dimensional σ-models, or in mathe-
matical terminology, harmonic maps of the two-dimensional sphere into Rie-
mannian manifolds. The twistor interpretation of such maps was studied in
detail by Eells and his colleagues.

All considered equations have a deep physical meaning and their study is
equally interesting both for physicists and mathematicians.

This lecture course was delivered by the author during the spring semester
of 2018 of the Scientific-Educational Center of Steklov Mathematical Insti-
tute. I am grateful to all listeners of the course and especially to I.V.Maresin
for their remarks which helped me to improve the original text of the paper.

While preparing this course the author was supported partially by the
RFBR grants 16-01-00117, 13-02-91330 and the Program ”Nonlinear Dy-
namics” of Presidium of RAS.

Moscow Armen Sergeev



Chapter 1

TWISTOR GEOMETRY

1.1 Twistor model of Minkowski space

1.1.1 Minkowski space

The Minkowski space M is a 4-dimensional real vector space provided with
the Lorentz metric. The square of the length of a vector x = (x0, x1, x2, x3) ∈
M in this metric is given by the formula

|x|2 = (x0)2 − (x1)2 + (x2)2 + (x3)2.

The group L of linear transformations of M , preserving the Lorentz metric,
is called the Lorentz group.

The vectors x with zero length: |x|2 = 0, are of special interest. Such
vectors are called light vectors or null vectors. The light line is a straight
line with light tangent vector. The light lines, passing through the point 0,
form the light cone with vertex at 0:

C = C0 = {x ∈M : |x|2 = 0} = {x ∈M : (x0)2 = (x1)2 + (x2)2 + (x3)2}.

The interior of the light cone V = {x ∈ M : |x|2 > 0} consists of two
components: the future cone

V+ = {x ∈M : |x|2 > 0, x0 > 0}

and the past cone

V− = {x ∈M : |x|2 > 0, x0 < 0}.
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8 CHAPTER 1. TWISTOR GEOMETRY

The light cone Cx0
with vertex at an arbitrary point x0 ∈ M is defined in a

similar way:

Cx0
= {x ∈M : |x− x0|

2 = 0}.

The complex Minkowski space CM is the complexification of the Minkowski
space M coinciding with the 4-dimensional complex vector space consisting
of vectors z = (z0, z1, z2, z3) ∈ C4. As in the real case, a vector z ∈ CM is
called the complex light vector if

|z|2 := (z0)2 − (z1)2 − (z2)2 − (z3)2 = 0.

The complex light cone with vertex at a point z0 ∈ CM is given by the
equation: (z − z0)

2 = 0. The complex analogs of the future and light cones
are provided by the future tube

CM+ = {z = x+ iy ∈ CM : |y|2 > 0, y0 > 0}

and past tube

CM− = {z = x+ iy ∈ CM : |y|2 > 0, y0 < 0}.

The Euclidean space E is a 4-dimensional real vector space in CM given
by the equations

z0 = x0, z1 = ix1, z2 = ix2, z3 = ix3

where x0, x1, x2, x3 are arbitrary real numbers.

1.1.2 Spinor model of Minkowski space

The Pauli map associates with a vector x ∈ M the complex 2× 2-matrix X
according to the formula:

M ∋ x = (x0, x1, x2, x3) 7−→ X =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

Using the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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the Pauli map may be written in the form

x 7−→ X = x0σ0 + x1σ1 + x2σ2 + x3σ3

where σ0 = I is the identity 2× 2-matrix.
The Pauli map realizes Minkowski space M as the space Herm(2) of

Hermitian 2× 2-matrices. The squared Lorentz norm |x|2 of a vector x ∈M
under this map is sent to detX.

There is an action of the group SL(2,C) of complex 2× 2-matrices with
unit determinant on the space Herm(2) of Hermitian matrices by the rule:

X 7−→ AXA∗, X ∈ Herm(2)

where A ∈ SL(2,C), and A∗ is the Hermitian conjugate matrix: A∗ = Āt.
This action preserves detX and so, by the Pauli correspondence, generates
a linear transform of Minkowski space, preserving the Lorentz metric. Note,
however, that matrices ±A generate the same Lorentz transform, in other
words, the group SL(2,C) is a double covering of the Lorentz group L (prove
the last statement!).

The complex Pauli map, given by the formula

CM ∋ z 7−→

3∑

µ=0

ziσi =: Z ∈ C[2× 2],

realizes the complex Minkowski space CM as the space C[2× 2] of complex
2× 2-matrices.

Under this map the future tube CM+ is transformed to the matrix upper
halfplane

H+ = {Z ∈ C[2× 2] : ImZ :=
1

2i
(Z − Z∗)≫ 0}.

The inequality ImZ ≫ 0 means that the Hermitian matrix ImZ is positively
definite, i.e. its eigenvalues are positive. If we apply to H+, by analogy with
the scalar case, the Cayley transform

Z 7−→W = (I − iZ)−1(I + iZ)

then the matrix upper halfplane H+ will be sent to the matrix disk

D = {W ∈ C[2× 2] : I −W ∗W )≫ 0}.
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It is a classical Cartan domain of the 1st kind. The space Herm(2) of Her-
mitian matrices under the Cayley map transforms into the distinguished
boundary of the matrix disk D coinciding with the group U(2) of unitary
2× 2-matrices.

Using the composite map from M to the compact group U(2), we can
construct a compactification of the space M by defining it as the inverse
image of U(2) under the map M → U(2). It is the so called conformal
compactification of Minkowski space used in the general relativity theory.

Problem 1. Describe the topology of the compactified Minkowski space.
What lies at ”infinity” of this space?

The complex vector space C2, on which the group SL(2,C) acts as the
group of matrices, is called the space of spinors.

1.1.3 Twistor model of Minkowski space

We shall construct now the twistor model of Minkowski space. Denote by T

the 4-dimensional complex vector space C4. It is convenient to write down
its vectors as the pairs ζ = (ω, π) where ω, π ∈ C2. Associate with a matrix
Z ∈ C[2× 2] the two-dimensional complex subspace in T determined by the
system of two complex equations

ω = Zπ.

This defines am embedding of the space C[2× 2] of matrices into the Grass-
mann manifold G2(T) consisting of 2-dimensional complex subspaces in T.

Taking the composition with the Pauli map we shall obtain an embedding

CM −→ C[2× 2] −→ G2(T) (1.1)

of the complex Minkowski space CM into the Grassmann manifold G2(T).
Since the latter manifold is compact it is natural to consider G2(T) as a
model of compactified complexified Minkowski space CM. The space T itself
is called the space of twistors. Its projectivization PT consists of 4-tuples [ζ1 :
ζ2 : ζ3 : ζ4] of complex numbers (ζ1, ζ2, ζ3, ζ4) defined up to proportionality,
i.e.

[ζ1 : ζ2 : ζ3 : ζ4] = [λζ1 : λζ2 : λζ3 : λζ4]

for any nonzero complex number λ. The space PT is called the space of
projective twistors. The Grassmann manifold G2(T) may be also considered
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as the Grassmann manifold G1(PT) of projective lines in PT = CP3. A
projective line in PT is determined by the pair of homogeneous equations in
the space of twistors T.

We consider now the ”ideal elements” of CM, i.e. the points of G2(T)
which do not belong to the image of the map (1.1). Denote by P∞ the
subspace of T at ”infinity” given by the equation

P∞ : π = 0.

The 2-subspaces in T, which do not belong to the image of the map (1.1),
should have non-zero intersection with P∞. Any 2-subspace in T is given by
the system of equations

Z1ω = Z2π

where the 2 × 2-matrices Z1, Z2 are defined up to multiplication from the
left by a non-degenerate 2× 2-matrix. Such subspace has non-zero intersec-
tion with P∞ iff detZ1 = 0. As we have pointed out before, the equation
detZ2 = 0 determines the complex light cone in CM . So the set of solutions
of the equation detZ1 = 0 may be interpreted as the complex light cone ”at
infinity” . Hence, the ”ideal” set CM \ CM is identified with the complex
light cone ”at infinity” .

The constructed mapping (1.1): CM → G2(T) = G1(PT) is called the
twistor correspondence or the Penrose correspondence.

1.2 Twistor correspondence

1.2.1 Twistor correspondence in the case of complex

Minkowski space

By the definition of twistor correspondence

{point of CM} −→ {projective line in PT}

Identifying a point in PT with the bundle of projective lines passing through
this point, we obtain that a point in PT corresponds to a 2-dimensional null
plane in CM called the α-plane:

{
2-domensional complex null
plane≡ α-plane

}
−→

{
point in PT ≡ bundle of projective lines
passing through this point

}



12 CHAPTER 1. TWISTOR GEOMETRY

A plane in CM is called null or isotropic if it generated by two linearly
independent light vectors. The dual type of isotropic planes in CM , called
the β-planes , corresponds to the dual object in PT, namely, to a projective
plane identified with the system of projective lines lying in this plane:
{

2-dimensional complex null
plane≡ β-plane

}
−→

{
projective plane in PT ≡ system of
projective lines lying in this plane

}

Taking the intersection of the two last diagrams we find the twistor image of
a complex light line

{
complex light line in
CM

}
−→





(0, 2)-flag in PT ≡ (point of PT, projective
plane containing this point)≡ bundle of pro-
jective lines lying in this plane and passing
through this point





The last assertions imply that

{
complex light cone in CM ≡ bundle of
complex light lines passing through a
fixed point of CM

}
−→

{
projective line in PT ≡ family of
(0, 1, 2)-flags in PT with fixed pro-
jective line

}

1.2.2 Twistor correspondence in the case of real Minkowski

space

The twistor norm of an element ζ = (ω, π) ∈ T is by definition equal to

Φ(ζ) = Im〈ω, π〉

where 〈ω, π〉 is the Hermitian inner product of vectors ω = (ω1, ω2) and
π = (π1, π2) in C2:

〈ω, π〉 = ω1π̄1 + ω2π̄2.

Denote by N the quadric in T given by the equation

N : Φ(ζ) = 0,

and by PN the corresponding projective quadric.
Under the twistor correspondence the points of M are sent to the projec-

tive lines belonging to PN:

{point of M} −→ {projective line lying in PN}
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The image of a light line in M under the twistor correspondence coincides
with a point in PN which is identified with the bundle of projective lines
lying in the intersection of the complex tangent plane to PN in a fixed point
with the quadric PN:

{
light line in
M

}
−→





point of PN ≡ (point of PN, complex tangent plane
to PN at this point)≡ bundle of projective lines
lying in the complex tangent plane and passing
through the fixed point





A light cone in M is identified with the projective line in PN:

{
light cone in M ≡ bundle of light
lines passing through a fived point
of M

}
−→

{
projective line in PN ≡ intersection of
PN with the complex tangent plane at
every point of the fixed projective line

}

Hence, in the case of real Minkowski space the twistor correspondence
determines a duality of the following type:

{points of M } −→ {projective lines in PN }

{light lines in M} −→ {points of PN}

So the light lines, which can intersect each other in M , split into separate
points of PN. This fact is of fundamental importance for the whole twistor
theory.

The quadric N divides the twistor space T into two parts — the space of
positive twistors T+ = {ζ ∈ T : Φ(ζ) > 0} and the space of negative twistors
T− = {ζ ∈ T : Φ(ζ) < 0}. The restriction of the twistor correspondence to
the future and past tubes yields:

{point of CM+} −→ {projective line lying in PT+}

{point of CM−} −→ {projective line lying in PT−}

The quadric N = {ζ ∈ T : Φ(ζ) = 0} has the signature (2,2) so in appropriate
basis of the space T it can be written in the form

Φ̃(z) = |z1|
2 + |z2|

2 − |z3|
2 − |z4|

2.

The group SU(2, 2) of linear transformations of T, preserving the quadric N,
generates transformations of compactified Minkowski space M, sending light
lines into light lines and light cones into light cones.
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Recall that a map of Minkowski space M is called conformal if it has this
property. The group of conformal maps of M is denoted by C(1, 3).

We have just shown that the maps from the group SU(2, 2) generate
conformal maps of the compactified Minkowski space M. Note that the
elements ±A, ±iA from SU(2, 2) generate the same transform of M. In
other words, the group SU(2, 2) is a 4-fold covering of the conformal group
C(1, 3) of Minkowski space M.

Consider in more detail the group structure of the twistor model G2(T)
of Minkowski space. The group

G := SL(4,C)/{±I,±iI}

acts in a natural way on G2(T). Fix the basis {ei} of the space T in which
the quadric N is given by the equation

Φ̃(z) = |z1|
2 + |z2|

2 − |z3|
2 − |z4|

2 = 0.

Write an arbitrary linear transform of the twistor space T in the form of a
block 4× 4-matrix (

A B
C D

)
(1.2)

where A,B,C,D are complex 2×2-matrices. Denote by P0 the two-dimensional
subspace from G2(T) of the following form

P0 = {z ∈ T : z3 = z4 = 0}.

The isotropy subgroup G0 of the group G at P0 consists of the block matrices
(1.2) in which C = 0, detA · detD = 1. So G2(T) may be identified with the
homogeneous space of the group G of the form G/G0.

Denote by GR the real form of the group G defined by

GR = SU(2, 2)/{±I,±iI}.

The isotropy subgroup GR
0 at P0 coincides with G0 ∩G

R.
The homogeneous space GR/GR

0 may be identified with the twistor model
of the future tube CM+. Indeed, the twistor image of CM+ coincides with
the set of 2-subspaces lying in T+. We shall call such subspaces positive
and denote the set of all positive subspaces by G+

2 (T). Since the subspace
P0 is positive, the group GR preserves the positivity property and acts tran-
sitively on G+

2 (T), it follows that the homogeneous space GR/GR
0 coincides

with G+
2 (T) = CM+.
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1.2.3 Twistor correspondence in the case of Euclidean

space

The image of a point of Euclidean space under the twistor correspondence
coincides with the projective line in PT invariant under the mapi j : [ζ1 : ζ2 :
ζ3 : ζ4] 7→ [−ζ2 : ζ1 : −ζ4 : ζ3]:

{point of E } −→ {projective j-invariant line in PN }

These j-invariant lines do not intersect with each other. Moreover, in the
considered case the twistor correspondence coincides with the Hopf bundle

π : CP3 CP1

−→ E

where E is the compactified Euclidean space equal to the sphere S4. As
in 2-dimensional case, where the sphere S2 is identified with the complex
projective line, in 4-dimensional case the sphere S4 may be identified with
the quaternion projective line.

In order to clarify this assertion we recall basic definitions related to
quaternions. The space of quaternions H consists of the elements of the form

x = x1 + ix2 + ix3 + kx4

where x1, x2, x3, x4 are arbitrary real numbers and i, j, k are imaginary units,
i.e. i2 = j2 = k2 = −1, subject to the relation: ij = −ji = k. As a
real vector space, H is isomorphic to R4 with component-wise operations of
addition and multiplication by real numbers. The relation given above allows
us to introduce the operation of multiplication of quaternions.

The conjugation of quaternions is defined by the formula

x̄ = x1 − ix2 − jx3 − kx4.

Using it we can introduce the norm of a quaternion by

|x|2 = xx̄ = x̄x = x2
1 + x2

2 + x2
3 + x2

4.

From the algebraic point of view the space of quaternions is a noncommuta-
tive field since any non-zero quaternion x has its inverse:

x−1 = x̄/|x|2.
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Quaternions are conveniently written in the complex form

x = z1 + jz2 where z1 = x1 + ix2, z2 = x3 + ix4.

As a complex vector space, H is isomorphic to C2.

Another convenient way of writing down quaternions is with the help of
matrices. Namely, quaternions may be realized as complex 2×2-matrices by
assigning to a quaternion x = z1 + jz2 the matrix

(
z1 z2
−z̄2 z̄1

)
.

Under thus identification the quaternion multiplication corresponds to the
product of matrices. The ”unit circle” in H, coinciding with

Sp(1) = {x ∈ H : |x|2 = 1},

is identified with the group SU(2) of unitary 2×2-matrices with determinant
1.

Now we can return to the interpretation of the sphere S4 as the quater-
nion projective line. The quaternion projective line HP1 consists of pairs of
quaternions [(z1 + jz2) : (z3 + jz4]) defined up to multiplication from the
right by non-zero quaternions.

The map π : CP3 → HP1, mentioned above, is given by the tautological
formula

[z1 : z2 : z3 : z4] 7−→ [(z1 + jz2) : (z3 + jz4)]

where the 4-touple [z1 : z2 : z3 : z4] is defined up to the multiplication by a
non-zero complex number while the pair [(z1 + jz2) : (z3 + jz4)] is defined up
to multiplication from the right by a non-zero quaternion.

The map

j : [z1 : z2 : z3 : z4] 7−→ [−z2 : z1 : −z4 : z3]

corresponds to the multiplication of the pair (z1 + jz2, z3 + jz4) by the
imaginary unit j from the right which does not change the projective class
[(z1 + jz2) : (z3 + jz4)]. So the fibers of the bundle π are j-invariant pro-
jective lines and the twistor correspondence in Euclidean case coincides with
the pull-back by π.
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1.2.4 Klein model of Minkowski space

Any subspace from G2(T) is given, up to multiplication by a non-zero com-
plex number, by the bivector p = p1 ∧ p2 where p1, p2 is a pair of linearly
independent vectors lying in the considered 2-subspace. Fix an orthonormal
basis {ei} in T. Then bivectors ei ∧ ej , i < j, will form the basis of the
exterior square

∧2
T. So decomposing an arbitrary bivector p in this basis,

we can represent it in the form

p =
∑

i<j

pijei ∧ ej .

In this way we can associate with any 2-subspace from G2(T) the collection
[pij ] of its Plücker coordinates defined up to multiplication by a non-zero
complex number.

Plücker coordinates satisfy the relation

p12p34 − p13p24 + p14p23 = 0 (1.3)

which follows from the evident condition p ∧ p = 0.
The constructed correspondence allows to identify the space G2(T) with

the projective quadric PQ in the 5-dimensional complex projective space
CP5 determined by the equation (1.3). This quadric is called the Klein
model of the compactified complexified Minkowski space CM. In appropriate
coordinates (u, v) = (u1, u2, u3, v1, v2, v3) in the space C6 the quadric Q in
C6, given by the equation (1.3), may be written in the form

u2
1 + u2

2 + u2
3 = v2

1 + v2
2 + v2

3 (1.4)

or, shortly, u2 = v2.
The main objects of geometry of Minkowski space CM admit the following

interpretation in terms of Klein model.

{point of CM} −→ {point of quadric PQ}

The quadric Q, given by equation (1.4), has two systems of straight genera-
tors, represented by 3-subspaces defined by the equations

u = Av where A ∈ O(3,C).

The group O(3,C) of linear transformations of C3, preserving the form u2 =
u2

1 +u2
2 +u2

3, consists of two connected components singled out by the sign of
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detA. The straight generators {u = Av} with detA = 1 correspond under
the twistor correspondence to α-planes while the generators {u = Av} with
detA = −1 correspond to β-planes.

{
complex light cone in
CM with vertex at a
given point

}
−→

{
tangent cone to quadric PQ ≡ intersection
of the tangent space to PN at a given point
with the quadric PQ

}

The real Minkowski space M and Euclidean space E admit the following
interpretation in terms of the quadric PQ

{point of M} −→

{
point of the real quadric x2

1 +x2
2 +

x2
3 + x2

4 − x
2
5 − x

2
6 = 0 in PQ

}

{point of E} −→

{
point of the real quadric x2

1 +x2
2 +

x2
3 + x2

4 + x2
5 − x

2
6 = 0 in PQ

}

The group G = SL(4,C)/{±I,±iI}, acting on the space G2(T), generates
projective transforms of C6, preserving the quadric Q, i.e. transforms from
the group O(6,C)/{±I}. Hence, we have a homomorphism

G −→ O(6,C)/{±I}.

In analogous way, Klein interpretation of the real Minkowski space M is re-
lated to the local isomorphism SU(2, 2) ∼= SO(4, 2), and Klein interpretation
of Euclidean space E is related to the local isomorphism SL(2,H) ∼= SO(5, 1).

The twistor program of Penrose proclaims that the twistor correspon-
dence should send solutions of conformally invariant equations of field the-
ory, defined on Minkowski space M, to the objects of complex geometry in
twistor space PT.

1.2.5 Twistor bundles

The Hopf bundle π : CP3 → S4 constructed above admits a nice interpreta-
tion in terms of complex structures on Euclidean space E = R4 proposed by
Atiyah.

The map π over R4 coincides with the bundle

π : CP3 \ CP1
∞
−→ E
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where the omitted projective line CP1
∞

is identified with the fibre π−1(∞) of
the Hopf bundle at ∞ ∈ S4.

The space CP3 \CP1
∞

is sliced by parallel projective planes CP2 intersect-
ing in CP3 on the omitted projective line CP1

∞
. Consider the fibre π−1(p) of

π over an arbitrary point p ∈ E. Through any point z of this fibre passes
the affine complex plane C2

z from our family. Associate with the point z a
complex structure Jz on the tangent plane TpE ∼= R4 by identifying TpE
with C2

z with the help of the tangent map π∗. In this way the fibre π−1(p)
of the twistor bundle π over the point p becomes identified with the space
of complex structures on the tangent space TpE. All constructed complex
structures are compatible with the metric and orientation of R4 in the sense
that operators Jz on TpE are represented by skew-symmetric matrices with
zero trace.

This construction admits an extension to arbitrary even-dimensional ori-
ented Riemannian manifolds X. Namely, consider the bundle π : J (X)→ X
of complex structures on X having the fibre at a point p ∈ X equal to the
space J (TpX) ∼= J (R2n) of complex structures on the tangent space TpX
compatible with Riemannian metric and orientation. Such complex struc-
tures on TpX ∼= R2n are given by skew-symmetric linear operators J with
zero trace and square J2 = −I. The space of these structures is identified
with the complex homogeneous space

J (R2n) ∼= O(2n)/U(n)

and so has a canonical complex structure.
The bundle π : J (X) → X is called the twistor bundle over X. We

show that it has a natural almost complex structure. The Riemannian con-
nection on X generates a natural connection in the principal SO(2n)-bundle
SO(X) → X of orthonormal frames on X and this connection determines
the vertical-horizontal decomposition

TJ (X) = V ⊕H

of the associated bundle of complex structures. Introduce an almost complex
structure J 1 on J (X) by setting

J 1 = J v ⊕ J h.

The value of the vertical component J v
z ∈ End(Vz) at z ∈ J (X) coincides

with the canonical complex structure on the complex homogeneous space
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Vz ∼= SO(2n)/U(n). The value of the horizontal component J h
z ∈ End(Hz)

at z coincides with the complex structure J(z)↔ z on the space Hz identified
with the tangent space Tπ(z)X via the tangent map π∗. Recall that the fibre
π−1(p) of the bundle J (X) → X at the point p = π(z) ∈ X consists of the
complex structures on TpX and we denote by J(z) the complex structure on
TpX corresponding to the point z ∈ π−1(p).

The constructed almost complex structure J 1 on J (X) makes the space
J (X) an almost complex manifold. This structure was introduced by Atiyah–
Hitchin–Singer .



Chapter 2

GAUGE FIELDS

2.1 Instantons and Yang–Mills fields

2.1.1 Yang–Mills equation

Let X be a compact 4-dimensional Riemannian manifold and G be a compact
Lie group called the gauge group.

The gauge potential A is a connection in a principal G-bundle P → X
given by a 1-form on P with values in the Lie algebra g of G. Denote by
adP = P ×G g the associated bundle where G acts on g by the adjoint
representation. In terms of this bundle the gauge potential A is given by a
1-form

A ∈ Ω1(X, adP ).

The main example of the gauge group G for us will be the group SU(2).
In this case gauge potential A in local coordinates (xµ) = (x0, x1, x2, x3) is
given by a 1-form

A ∼
3∑

µ=0

Aµ(x)dx
µ

where Aµ are complex skew-Hermitian 2 × 2-matrices with zero trace, and
the sign ∼ means (here and afterwards) an expression in local coordinates.
In particular case G = U(1) the gauge potential coincides with the usual elec-
tromagnetic vector-potential (more precisely, with its Euclidean analogue).

The curvature F of a connection A is called the gauge field and is given
by a 2-form on P with values in the Lie algebra g or by the 2-form F ∈

21
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Ω2(X, adP ) equal to

F = DA = dA+
1

2
[A,A]

where D is the operator of exterior covariant differentiation

D : Ωp(X, adP ) −→ Ωp+1(X, adP )

generated by the connection A. In the case G = SU(2) the gauge field F is
given in local coordinates (xµ) by the 2-form

F ∼
3∑

µ,ν=0

Fµν(x)dx
µ ∧ dxν

where
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] with ∂µ = ∂/∂xµ.

In particular case G = U(1) the tensor (Fµν) coincides with the Euclidean
analogue of the Maxwell tensor of electromagnetic field.

The gauge transform is a fiberwise diffeomorphism g : P → P which is
G-equivariant in the sense that

g(hp) = gh(p)

for any h ∈ G, p ∈ P . In other words, g is a section of the bundle P ×G G.
Locally, the gauge transform is given by a smooth function g(x) on X with
values in the group G, and its action on gauge potential A and gauge field
F is defined by the formula

Ag = (Ad g−1)dg + (Ad g−1)A, Fg = (Ad g−1)F

where Ad is the adjoint action of the group G on the Lie algebra g.
In the case of the group G = SU(2) these formulas may be rewritten in

the form
Ag = g−1dg + g−1Ag, Fg = g−1Fg.

In particular case G = U(1) the gauge map coincides with the phase trans-
form g(x) = eiθ(x) which acts on A as the gradient transform A 7→ A + idθ
while the gauge field F is not changed.

The Yang–Mills action functional is defined by the formula

SYM(A) =
1

2

∫

X

‖F‖2vol
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where the norm ‖·‖ is determined by the inner product on the space of forms,
generated by the Riemannian metric on X and invariant inner product tr on
the Lie algebra g, vol is the volume element on X.

Problem 2. Find an explicit formula for this inner product on forms in local
coordinates.

In the case of the group G = SU(2) this formula may be rewritten, using
the Hodge ∗-operator, in the following form

SYM(A) =
1

2

∫

X

tr(F ∧ ∗F ).

The critical points of this functional are called the Yang–Mills fields.
They satisfy the Euler–Lagrange equation

D∗F = 0

where
D∗ = ∗D∗ : Ωp+1(X, adP ) −→ Ωp(X, adP )

is the operator conjugate to the operator D. This equation is called the
Yang–Mills equation and is often written in the form

D(∗F ) = 0.

2.1.2 Instantons

A gauge field F is called selfdual (resp. anti-selfdual) if

∗F = F (resp. ∗ F = −F ).

By the Bianchi identity DF = 0, implied by the relation F = DA, the gauge
fields, subject to the duality equations ∗F = ±F , satisfy automatically the
Yang–Mills equation.

Setting F± = 1
2
(∗F ± F ), we can represent the field F in the form

F = F+ + F− where ∗ F± = ±F±.

(Note that the fields F± are not obliged to satisfy the Bianchi identity, hence
also the Yang–Mills equations.) In these terms the Yang–Mills functional
may be rewritten in the form

SYM(A) =
1

2

∫

X

(
‖F+‖

2 + ‖F−‖
2
)
vol.
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Suppose that it is given a representation ρ of the group G in the vector
space Rn. Denote by E → X the vector bundle of rank n associated with
the principal bundle P → X. Assign to E a topological invariant, coinciding
with the 1st Pontryagin class, which is computed by the formula

p1(E) =
1

8π2

∫

X

(
‖F+‖

2 − ‖F−‖
2
)
vol =

1

8π2

∫

X

tr(F ∧ F ) (2.1)

and called the topological charge of F .

Problem 3. Check that the last formula indeed defines a topological invari-
ant of the field F .

It is evident that

SYM(A) ≥ 4π2|p1(E)|,

and the equality here is attained precisely on the solutions of the duality
equations. In other words, these solutions determine the local minima of the
functional SYM(A).

In physical papers the anti-selfdual (ASD)-solutions of Yang–Mills equa-
tions are called the instantons , while in mathematical literature it is usual
to deal with the selfdual (SD)-solutions which are naturally called the anti-
instantons .

We are mostly interested in the study of the moduli space of instantons :

{moduli space of instantons} =
{instantons}

{gauge transforms}

2.1.3 Yang–Mills fields on R4

Let A be a gauge potential on R4 with gauge group G. To guarantee the
finiteness of Yang–Mills action we impose on A an asymptotic condition
by requiring that the potential A should tend to a trivial one (i.e. pure
gauge potential) at infinity. In other words, we shall suppose that A(x) is
gauge equivalent to a potential of the form g(x)−1dg(x) for |x| → ∞. If this
condition is satisfied then, by restricting g−1 to the sphere S3

R of sufficiently
large radius R, we shall obtain a smooth map

g−1 : S3
R −→ G,
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determining the homotopy class [S3
R, G]. In the case of the group G = SU(2)

it gives one more definition of the topological charge introduced earlier.
Namely, it coincides with the degree of the map g−1 : S3

R → SU(2) ∼= S3.
The finiteness of Yang–Mills action on R4 for the instanton means ”phys-

ically” that it is localized in space R3 ⊂ R4 as well as in ”time” (x0) ⊂ R4

which explains its name.
The dimension of the moduli spaceMk of SU(2)-instantons on R4, having

topological charge −k, k positive integer, may be found with the help of
Atiyah–Singer index theorem and is equal to 8|k| − 3.

Problem 4. Try to prove this statement by yourself.

Consider the case k = 1 in more detail. Identify the space R4 with
the space of quaternions H, and the group SU(2) with the group Sp(1) of
quaternions with modulus 1. The Lie algebra of this group coincides with
the algebra of pure imaginary quaternions so the gauge potential on R4 is
given in this case by a 1-form on H with coefficients given by pure imaginary
quaternions.

The first example of 1-instantons was constructed by Belavin–Polyakov–
Schwarz–Tyupkin [6]. In quaternion notations it is given by the gauge po-
tential of the form

A(x) = Im

{
x̄dx

1 + |x|2

}
=
x̄dx− dx̄ · x

2(1 + |x|2)

where x = x0 + ix1 + jx2 + kx3. The corresponding gauge field has the form

F (x) =
dx̄ ∧ dx

(1 + |x|2)2
= Im

{
dx̄ ∧ dx

(1 + |x|2)2

}

and is anti-selfdual.
Its topological charge is equal to −1. Indeed, for |x| → ∞ we have

A(x) ∼ Im

{
x̄dx

|x|2

}
= Im {x−1dx}.

But for x 6= 0 the latter potential is pure gauge since

Im {x−1dx} = g(x)−1dg(x) where g(x) =
x

|x|
.
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Hence the topological charge of the field F coincides with the degree of the
map g−1 : S3 → S3 acting by the formula:

g−1(x) =
x̄

|x|

which has degree −1. So the gauge potential A does define a 1-instanton on
R4.

In order to obtain an SD-solution with charge +1 it is sufficient to replace
the formula for A(x) by

A(x) = Im

{
xdx̄

1 + |x|2

}
.

Let us construct a principal Sp(1)-bundle over S4 corresponding to this
instanton. For that apply to A the gauge field g−1. We get

Ag−1(x) = A(y) where y := x−1.

Consider now the standard covering of HP1 by open subsets

U0 = {[x : y] ∈ HP1 : y 6= 0} and U∞ = {[x : y] ∈ HP1 : x 6= 0}

and introduce the transition function

g0∞ : U0 ∩ U∞ −→ Sp(1)

by setting g0∞(x) = g(x)−1 = x̄/|x|. Thus, we have constructed a principal
Sp(1)-bundle P → S4 and 1-form A, equal to A(x) on U0 and A(y) on U∞

with y = x−1, determining an ASD-connection in the bundle P .
An arbitrary 1-instanton on R4 is given by gauge potential of the form

A(x) = Im

{
(x̄− x̄0)dx

λ2 + |x− x0|2

}
where x0 ∈ H, λ ∈ R,

depending on 5 real parameters.
Generalizing this method of construction of 1-instantons, we look for an

arbitrary gauge potential on R4 given by the following Ansatz

A(x) = Im{ϕ(x)−1∂ϕ(x)}
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where ϕ(x) is an arbitrary smooth real-valued function of x ∈ H, and

∂ϕ(x) :=
∂ϕ

∂x
dx.

This potential A defines an ASD-connection if it satisfies the following equa-
tion

∂∂̄ϕ = ∆ϕ = 0.

We obtain a non-trivial t’Hooft solution if we set in this Ansatz

ϕ(x) = 1 +
k∑

j=1

λ2
j

|x− xj |2

where (x1, . . . , xk) is a collection of different points in R4 and (λ1, . . . , λk)
is a collection of nonzero real parameters. This function corresponds to the
gauge potential A with singularities of the form Im{(x− xj)

−1dx} at points
xj . If we apply to A(x), as in the case of 1-instanton, the gauge transform

gj(x) :=
x− xj
|x− xj |

in the truncated neighborhood of the point xj , we obtain the gauge equivalent
potential of the form

Aj(x) = Im

{
(x̄− x̄j)dx

λ2
j + |x− xj |2

}
+ . . .

which has already no singularity at x = xj .
By construction, the gauge potential A determines an ASD-connection

outside the points {xj}. In order to associate with the connection A an
instanton on S4, we have to consider the covering of S4 by open balls Uj
with centers at points xj and the complement U∞ to the union of these
points in S4. The desired bundle over S4 is given by the transition functions
gj on intersections Uj ∩ U∞ and gjk = gjg

−1
k on intersections Uj ∩ Uk. The

forms Aj on Uj and A on U∞ define an ASD-connection in this bundle.
The constructed solution depends on 5k real parameters which for k ≫ 1

is much less than the number 8k − 3 of real parameters of the moduli space
of k-instantons. In the next section we shall give a construction which allows
to construct the whole family of k-instantons for any k.
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2.2 Atiyah–Ward theorem and ADHM-construction

2.2.1 Atiyah–Ward theorem

This theorem gives the twistor description of G-instantons in principal G-
bundles P → S4.

We start from the twistor description of instantons in a principal SU(2)-
bundle P → S4. Denote by E → S4 the complex vector bundle of rank
2 associated with the principal bundle P → S4. We suppose that E is
provided with a Hermitian structure and A is a connection compatible with
the Hermitian structure. It means that in any unitary frame A∗ = −A.

If E is a holomorphic vector bundle we can also consider connections com-
patible with the holomorphic structure. A connection is called holomorphic
if its potential A has type (1,0) in any holomorphic frame.

There is a natural relation between Hermitian and holomorphic connec-
tions stated in the following problem.

Problem 5. Let E be a holomorphic vector bundle provided with a Hermi-
tian structure. Then there exists a unique connection on E compatible with
both structures. The curvature of this connection has type (1,1).

The converse of this result is also true.

Theorem 1 (Atiyah–Hitchin–Singer). Let E be a holomorphic vector bundle
over a complex manifold X provided with a Hermitian structure. If E has a
Hermitian connection with curvature of type (1,1) then there exists a unique
holomorphic structure on E such that this connection is compatible with it.

We return now to the vector bundle E → S4 provided with the Hermitian
connection A. Consider its restriction to R4. We have the following assertion.

Problem 6. Connection A is an ASD-connection if and only if its curvature
has type (1,1) with respect to any complex structure on R4 compatible with
metric and orientation.

This assertion has in fact the infinitesimal character and is proved by the
direct computation in local coordinates.

Consider now the twistor bundle constructed above

π : CP3 −→ S4.
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Denote by Ẽ := π∗E the pull-back of the bundle E to CP3 via the map
π and by ∇̃ = ∇Ã the pull-back of the covariant derivative ∇ = ∇A to the
bundle Ẽ. If the connection A is an ASD-connection then the assertion of the
problem 6 implies that its pull-back Ã to Ẽ defines a holomorphic structure
on Ẽ, i.e. the curvature of Ã is of type (1,1).

The constructed holomorphic bundle Ẽ → CP3 is by construction holo-
morphically trivial on j-invariant projective lines in CP3 being the fibers of
the map π.

How the Hermitian structure on E behaves under the constructed corre-
spondence between the bundles E over S4 and Ẽ over CP3. The introduction
of this structure is equivalent to the introduction of an antilinear isomorphism
τ : E → E∗ such that the form (ξ, τη) is positively definite. By pulling up
this isomorphism to Ẽ we shall obtain a Hermitian structure on Ẽ, i.e. an
antilinear isomorphism τ̃ : Ẽ → Ẽ∗ covering the map j on P → S4. This
isomorphism has the following property:

(ξ, τ̃η) = (ξ, τ̃η),

i.e. defines a positive real form on Ẽ.

Theorem 2 (Atiyah–Ward theorem). There exists a bijective correspondence
between

{
moduli space of
SU(2)-instantons
on S4

}
←→





holomorphic vector bundles of rank 2 over CP3

holomorphically trivial on π-fibers and provided
with a positive real form





For Hermitian vector bundles E → S4 of rank n we shall obtain by the
Atiyah–Ward correspondence holomorphic vector bundles Ẽ → S4 of rank
nn which are holomorphically trivial on π-fibers and provided with a positive
real form.

The Atiyah–Ward theorem can be extended also to arbitrary Sp(n)-
instantons where Sp(n) is the group of invertible quaternion matrices prserv-
ing the standard Hermitian form 〈x, y〉 = x̄1y1 + . . . x̄nyn on Hn. By the
Atiyah–Ward correspondence they correspond to holomorphic vector bun-
dles of rank 2n on CP3 having additional quaternionic structure. Let E
be, as above, a vector bundle of rank 2n with a Hermitian connection. The
quaternion structure on E is given by a skew-symmetric isomorphism α com-
patible with connection. By pulling up this isomorphism to Ẽ, we shall
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obtain a skew-symmetric holomorphic isomorphism τ̃ : Ẽ → Ẽ∗. This skew-
symmetric holomorphic isomorphism determines a non-degenerate skew-symmetric
form on Ẽ. Combining it with the antilinear isomorphism τ̃−1, we get an an-
tilinear isomorphism j̃ : Ẽ → Ẽ covering the map j P → S4.

So we have the following variant of Atiyah–Ward theorem for Sp(n)-
instantons.

Theorem 3. There is a bijective correspondence between

{
moduli space of
Sp(n)-instantons
on S4

}
←→





holomorphic vector bundles of rank 2n over CP3

with non-degenerate holomorphic skew-symmetric
form compatible with the antilinear isomorphism
j̃ : Ẽ → Ẽ





The compatibility with skew-symmetric form means that

(j̃ξ, j̃η) = (ξ, η).

Note that holomorphic vector bundles Ẽ on CP3 should be holomorphically
trivial on π-fibers. Moreover, restriction of the Hermitian form (ξ, j̃η) to the
π-fibers should positive definite.

There is also a purely complex generalization of this theorem. Consider
it first for the future tube CM+. Let E be a holomorphic vector bundle of
rank n over CM+ and ∇ is the holomorphic covariant derivative acting on
sections of E which is generated by a holomorphic connection A. We call this
connection anti-selfdual (ASD) if its curvature vanishes on all α-planes. The
complex variant of Atiyah–Ward theorem asserts that there exists a bijective
correspondence between




moduli space of holomor-
phic ASD-connections on
CM+



←→





holomorphic vector bundles of rank n
on PT+ holomorphically trivial on pro-
jective lines lying in PT+





This theorem is based on the following Ward construction. Let Ẽ be
a holomorphic vector bundle over PT+ which is holomorphically trivial on
projective lines in PT+. The fiber Ez of the corresponding holomorphic vector
bundle E → CM+ at a point z ∈ CM+ consists by definition of holomorphic
sections of the bundle Ẽ over the projective line CP1

z corresponding to the
point z. If two projective lines CP1

z and CP1
z′ intersect, i.e. the points z and

z′ lie on the same complex light line then we can identify the fibers Ez and
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Ez′ with each other. In this way we define on E the parallel transport along
complex light lines in CM+ generating a holomorphic connection in E. Since
the α-plane in CM+ corresponds to the bundle of projective lines passing
through a fixed point of CP3 the constructed connection is automatically
anti-selfdual.

For the inverse construction (from E to Ẽ) it is convenient to use the
double diagram

F+

µ

}}zz
zz

zz
zz ν

""EE
EE

EE
EE

PT+ CM+

where F+ is the space of (0, 1)-flags in PT+, i.e. pairs (point of PT+, pro-
jective line in PT+ containing this point). The space CM+ is identified here
with the Grassmann manifold G1(PT+) of projective lines lying in PT+, and
µ, ν are natural projections. Denote by E ′ the pull-back of E to a bundle
over F+ via the map ν and by ∇′ the pull-back of the connection ∇ to the
bundle E ′. Define the fibre of the bundle Ẽ → PT+ at a point ζ ∈ PT+ as
the space of holomorphic sections s′ ∈ Γ(µ−1(ζ), E ′) satisfying the equation

∇′

µs
′ = 0

where ∇′
µ is the component of ∇′ acting along the fibers of the map µ. In

other words, the fibre Ẽζ consists of horizontal holomorphic sections of E ′

over µ−1(Z). This definition is correct due to the anti-selfduality of ∇.

The given complex version of Atiyah–Ward theorem remains true if we
replace PT+ in this theorem by a domain D̃ in CP3 such that projective lines
lying in it correspond to the points of some domain D in CM . This domain
should have an additional property that the intersection of any complex light
line with this domain is connected and simply connected.

2.2.2 ADHM-construction

The ADHM-construction yields a description of instantons on S4. We shall
present it for the case of Sp(n)-instantons. Atiyah–Ward theorem reduces
the problem of description instantons on S4 to the problem of classification
of holomorphic vector bundles on CP3 which are holomorphically trivial on
j-invariant projective lines.
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In the case of Sp(n)-instantons it is given a quaternion vector bundle
E → S4 with fibre Hn provided with an ASD-connection with associated
covariant derivative ∇. Suppose that Pontryagin number of this bundle is
equal to p1(E) = −k for a natural k.

Denote by [x : y] the quaternionic homogeneous coordinates on S4 = HP1

and consider a homogeneous matrix function on H2 of the form

∆(x, y) = xC + yD

where C,D are quaternion k × (k + n)-matrices. Suppose that ∆(x, y) has
maximal rank for all (x, y) 6= (0, ). Then ∆ will define a non-degenerate
linear transform

∆ : H2 ⊗R W −→ V

where V is the (k + n)-dimensional quaternion vector space and W is its
k-dimensional subspace. Then the space

E(x,y) = Ker∆∗(x, y),

having for fixed (x, y) quaternion dimension n, is the fiber of the desired
quaternion vector bundle.

Denote by P(x,y) : V → E(x,y) the operator of orthogonal projection and
provide E with the standard Levi-Civita covariant derivative∇. If we restrict
E to the Euclidean space R4 ⊂ S4 by replacing [x : y] with x := [x : 1] then
the covariant derivative ∇ in E will be given by the formula ∇ = Pd/dx and
its curvature F will be equal to

F = PC∗dx̄ [∆(x)∆∗(x)]−2 dxCP.

If the matrix ∆(x)∆∗(x) is real for all x ∈ H then the matrix [∆(x)∆∗(x)]−2

will commute with quaternion dx̄ and the expression for F will contain the
only form dx̄ ∧ dx which is ASD, i.e. the form F will be anti-selfdual.

Problem 7. Show that the topological charge of the constructed connection
is equal to −k.

The given construction of instantons admits a transparent geometric in-
terpretation. Namely, the bundle E → S4 coincides with the preimage of
the classifying bundle for the appropriate choice of the map f from S4 to
the Grassmann manifold. In more detail, consider on the Grassmann mani-
fold Gn(H

n+k) of n-dimensional subspaces in Hn+k the standard tautological
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bundle. It is provided with the canonical Sp(n+ k)-invariant connection de-
termined by the orthogonal projection. The constructed bundle E → S4 is
the preimage of this classifying bundle under the map f : S4 → Gn(H

n+k)
given by the matrix function ∆(x, y). Moreover, the connection ∇ on E co-
incides with the connection induced by the canonical connection via the map
f .

In particular, the t’Hooft solution, constructed above, can be described
in these terms as the Sp(1)-bundle with connection on S4 coinciding with the
inverse image of the classifying Sp(1)-bundle over HPk under the following
map: its restriction to R4 = H is given by the formula

x 7−→ [1 : (x− x1)
−1 : . . . : (x− xk)

−1].

To define it for x = xj one should multiply its components by the quater-
nion (x − xj) which does not change the image of the map in homogeneous
coordinates.

According to Donaldson [8], the reality condition, imposed on the matrix
function ∆(x), may be rewritten in the form of commutation relations for
the components of its matrix coefficients. On the other hand, the duality
equations on R4 may be also written in the form of commutation relations
on the components of the connection ∇(x). So the ADHM-construction may
be considered as a transformation between the commutation relations for
matrix functions on R4 and commutation relations for differential operators
of the first order on R4.

2.3 Monopoles and Nahm equations

2.3.1 Bogomolny equations

LetG be a compact Lie group and A is a G-connection on the Euclidean space
R4. Suppose that the connection A is static in the sense that translation in
”time” x0 generates a gauge transform of A. Such connection may be given
by the 1-form of type

A = Φdx0 +

3∑

j=1

Aidx
i

having the coefficients which take values in the Lie algebra g of G and does
not depend on x0.
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The duality equations for such form look like

D′Φ = ± ∗′ F ′

where A′ is a G-connection on the Euclidean space R3, F ′ = FA′ is its curva-
ture, D′ = DA′ is the exterior covariant derivative associated with connection
A′, and ∗′ is the Hodge operator on R3. Further on we omit the primes since
we shall deal only with connections on R3.

So starting from this point A is a G-connection in the (trivial) principal
G-bundle P → R3, Φ is the section of the adjoint bundle adP and we are
interested in the solutions of the equation

DAΦ = ± ∗ FA

called the Bogomolny equation. Denoting the form ∗FA by B and omitting
the subindex A, we can rewrite this equation as

DΦ = ±B.

In physical language Φ is called the Higgs field and the form B is interpreted
as magnetic field.

Introduce the Yang–Mills–Higgs action functional

SYMH(A,Φ) =
1

2

∫

R3

(
‖F‖2 + ‖DΦ‖2

)
d3x.

The critical points of this functional are called the Yang–Mills–Higgs fields
and satisfy the following Euler–Lagrange equation

{
∗D(∗F ) = [DΦ,Φ]

�Φ = 0

where �Φ = ∗D(∗DΦ).
In order to guarantee the finiteness of the action SYMH we impose on the

considered fields the following asymptotic conditions called otherwise the
Prasad-Sommerfield limit :

‖Φ‖ −→ 1, ‖DΦ‖ −→ 0, ‖F‖ −→ 0

uniformly for |x| → ∞.
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Consider in more detail the case G = SU(2). Assign to the Yang–Mills–
Higgs field a topological invariant given by the formula

k =
1

4π

∫

R3

tr(F ∧DΦ) = lim
R→∞

1

4π

∫

S2

R

tr(ΦF ).

This invariant coincides with the degree of the map of the sphere S2
R of

sufficiently large radius R to the Lie algebra su(2) given by the Higgs field:

Φ : S2
R −→ {Φ ∈ su(2) : ‖Φ‖ ≈ 1} = S2.

This invariant, called the topological charge k, may be also computed by the
formula

k = −
1

4π
lim
R→∞

∫

S2

R

tr(ΦdΦ ∧ dΦ).

The Yang–Mills–Higgs action may be rewritten in the form

SYMH(A,Φ) =
1

2

∫

R3

‖F ∓DΦ‖2d3x± 4π.

This is so called Bogomolny transform. The last formula implies that

SYMH(A,Φ) ≥ 4π|k|,

and the equality here is attained only on solutions of the Bogomolny equation

DΦ = ± ∗ F.

In other words, solutions of the Bogomolny equation with finite action realize
local minima of the action SYMH. These solutions are called monopoles (or
BPS-monopoles in honour of Bogomolny–Prasad–Sommerfield) because of
their close relation to Dirac monopole.

For monopoles with charge k the asymptotic conditions for the Higgs field
Φ may be written in a more precise form

‖Φ‖ = 1−
k

r
+O(

1

r2
) for r = |x| → ∞.

Apart from monopoles, the functional SYMH has also other critical points
found by Taubes [17]. All of them are not stable (i.e. they are saddle points)
and have sufficiently large Morse index (namely, the index µ of a non-minimal
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critical point of the functional SYMH(A,Φ) for a non-minimal Yang–Mills–
Higgs field with topological charge k is greater than |k|+ 1).

We have introduced monopoles as solutions of static duality equations
on R4. They can be also obtained from the axis-symmetric solutions of the
duality equations in R4 with topological charge k by taking the limit of such
solutions for k →∞.

2.3.2 Examples of monopoles

Identify R3 with the space of pure imaginary quaternions so that

x = (x1, x2, x3) ∈ R3 ←→ x = ix1 + jx2 + kx3 ∈ Im H.

The monopole with charge ±1, constructed by Prasad and Sommerfield, has
the form

A =

(
1

|x|
−

1

sh|x|

)
Im

{
dx · x

|x|

}
, Φ = ±

(
1

|x|
−

1

th|x|

)
x

|x|
. (2.2)

An arbitrary (±1)-monopole may be obtained from the one above by making
in the last formula change of variables x 7→ x − x0 where x0 is an arbitrary
point of R3. The obtained solution will depend on 3 real parameters.

It may be shown that the dimension of the moduli spaceMk of monopoles
with charge −k is equal to 4k − 1. There is a construction of Taubes which
allows to construct a family of monopoles depending on 3k real parameters.
Namely, according to Taubes theorem there exist positive constants d,R such
that for any collection of points {x1, . . . , xk} in R3 with distance between
them greater than d there exists a monopole (A,Φ) with topological charge
−k. The Taubes solution looks approximately like the sum of BPS-monopoles
with centers at given points x1, . . . , xk in the sense that the zeros of the Higgs
field Φ are close to the points x1, . . . , xk and the local topological charge of
Φ in these zeros is equal to −1. In more detail, consider the family of non-
intersecting balls BR(xi), i = 1, . . . , k with centers in points xi of radius R
(R ∼ d−1/2 for d→∞). Then for d→∞ we can assert the following:

1) all zeros of Φ are contained in the union of the balls BR(xi);

2) the degree of the map Φ̂ : ∂BR(xi)→ {Φ̂ = Φ/‖Φ‖ : Φ ∈ su(2)} = S2

is equal to −1.
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2.3.3 Nahm–Hitchin construction

We can associate with any monopole its spectral curve. In order to construct
it we use the twistor considerations by taking for the twistor space the tangent
bundle TP1 of the Riemann sphere. This bundle may be identified with the
space of oriented lines in R3 if we parameterize such line by its tangent vector
u and shortest distance vector v.

Associate with a point x ∈ R3 the bundle of oriented lines passing through
this point. It may be identified with a holomorphic section of the tangent
bundle TP1 → P1 which is real with respect to the real structure given by
the change of orientation of every line in R3 to the opposite one. In this case
we have the following analog of twistor correspondence

{point of R3} −→

{
bundle of oriented lines passing through this point
≡ holomorphic real section of TP1 → P1

}

On the other hand,

{oriented line in R3 } −→ {point of TP1 }

In contrast with twistor space CP3 the space TP1 is not compact. But it
may be compactified by replacing the line bundle TP1 → P1 with the bundle

T̂P1 → P1 of tangent projective lines.
The constructed twistor correspondence allows to apply to monopoles the

ideas and methods developed for the instantons. In particular, Atiyah–Ward
theorem in the case of monopoles acquires the following form





solutions (A,Φ)
of Bogomolny
equations on R3





{gauge equivalence}
←→





equivalence classes of holomorphic vector
bundles of rank 2 on TP1 holomorphically
trivial on real holomorphic sections and
provided with a positive real form





The construction of this correspondence is close to the original Ward
construction. Denote by E → R3 the vector bundle of rank 2 associated
with the principal bundle P → R3. Let ∇ = ∇A be the covariant derivative
generated by the connection A, acting on smooth sections of E. Then the
fiber Ẽz of the bundle Ẽ of rank 2 over TP1 at a point z ∈ TP1 is defined
in the following way. Denote by γz the oriented line in R3 corresponding
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to the point z. The fiber Ẽz consists, by definition, from smooth sections
s ∈ Γ(γz, E) of E over the line γz satisfying the equation

(∇γ − iΦ)s = 0 (2.3)

where ∇γ is component of ∇ acting along γz.
Thus, the Bogomolny equation reduces to the family of ordinary differ-

ential equations of the form (2.3) on lines in R3. The main characteristic of
this family is its spectral curve consisting of the points z ∈ TP1 for which the
equation (2.3) has an L2-solution along the line γz.

We have described the transition from the monopoles to spectral curves.
Now we study the relation between monopoles and Nahm equations. This re-
lation is established with the help of infinite-dimensional analogue of ADHM-
construction.

The Nahm equations is a system of ordinary differential equations on
matrix functions T1, T2, T3 of a variable t ∈ [0, 2] of the following form

dT1

dt
= [T2, T3],

dT2

dt
= [T3, T1],

dT3

dt
= [T1, T2]. (2.4)

It is assumed that the functions Ti(t) extend to meromorphic matrix functions
defined in a complex neighborhood of the segment [0, 2] with only simple
poles at the points t = 0, 2. Moreover, we shall impose on them the following
reality conditions

Ti(z) + T̄i(2− z) = 0, T ∗

i (z) + Ti(z) = 0 (2.5)

and the non-degeneracy condition: the representations of the group SU(2),
determined by the residues of the functions Ti(z) in the poles, should be
irreducible.

Consider now, as in ADHM-construction, the quaternion matrix function
∆(x, y) of homogeneous quaternion coordinates x, y. Its restriction to the
space H = R4 has the form ∆(x) = xC +D. The operator ∆(x) : W → V ,
mapping a real vector space W into a quaternion vector space V , in the case
of monopoles is an ordinary differential operator and the spaces W and V
are infinite-dimensional.

Describe now the Nahm construction in more detail. Since the Bogomolny
equations coincide with the duality equations for static Yang–Mills fields
which do not depend on the variable x0 our map ∆(x) should satisfy the
following condition



2.3. MONOPOLES AND NAHM EQUATIONS 39

1) ∆(x + y0) = U(y0)−1∆(x)U(y0) where y0 7→ U(y0) is a representation
of the group R in the group of quaternion unitary transformations of
the space V .

Moreover, in the case of monopoles the same conditions, as in the case of
instantons, should be satisfied, namely:

2) the map ∆∗(x)∆(x) should be real for all x ∈ H;

3) the map ∆∗(x)∆(x) should be invertible for all x ∈ H;

4) the kernel of the map ∆∗(x) should have quaternion dimension 1 for
all x ∈ H.

Introduce now the space V . Denote by H0 the space L2(0, 2) and define
a real structure on H0 by the formula: σ(f)(z) := f̄(2 − z). The space V ,
equal to

V = H0 ⊗Ck ⊗H,

is a quaternion vector space. For the real subspace W we take

W = {f ∈ H1 ⊗ Rk : f(0) = f(2) = 0}

where H1 is the Sobolev space H1(0, 2).
Denote by e1, e2, e3 the operators of left multiplication by imaginary units

i, j, k respectively and set e0 = 1. Define the map ∆(x) : W → V as a
differential operator of the form

∆(x)f =

(
3∑

j=0

xjej

)
f + i

df

dz
+ i

3∑

j=1

Tj(z)ejf

where Tj(z) are (k × k)-matrix functions which are meromorphic in z in a
complex neighborhood of the segment [0, 2] with unique simple poles at its
ends. This operator has the desired form xC + D where C = I and D =
id/dz + i

∑3
j=1 Tjej . The constructed operator ∆(x) satisfies the conditions

1)-4), imposed on it earlier, if the matrix functions Tj satisfy the Nahm
equations together with reality and non-degeneracy conditions. Then the
ADHM-construction, being applied to the operator ∆(x), will give a solution
of Bogomolny SU(2)-equations.
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As it was remarked earlier the Bogomolny equations coincide with the
duality equations for static Yang–Mills fields in R4, i.e. the fields not de-
pending on the variable x0. On the other hand, the Nahm equations (2.4)
are equivalent to the duality equations for the connection

4∑

µ=0

Tµdx
µ

where T0 = 0, and T1, T2, T3 depend only on the variable x0 = t. Hence
we can consider the Nahm construction as a transform relating solutions
of duality equations, depending on one variable, to the solutions of duality
equations, depending on three variables. Recall that ADHM-construction
is also a transform relating matrices, which are solutions of a system of
commutation relations, with solutions of the duality equations depending
on four variables. So both constructions may be considered as non-trivial
duality transformations between different kinds of commutation relations.



Chapter 3

TWO-DIMENSIONAL

MODELS

3.1 Two-dimensional Yang–Mills–Higgs model

3.1.1 Yang–Mills–Higgs model on R2

Consider the Yang–Mills–Higgs action on R2 with parameter λ > 0 of the
following form

SλYMH(A,Φ) =
1

2

∫

R2

{
‖F‖2 + ‖DΦ‖2 +

λ

4
(‖Φ‖2 − 1)2

}
d2x.

Impose again the asymptotic conditions:

‖Φ‖ −→ 1, ‖DΦ‖ −→ 0, ‖F‖ −→ 0

uniformly for |x| → ∞.
We restrict first to the Abelian case, i.e. we shall assume that

A = −iA0dx
0 − iA1dx

1

is a 1-form on R2 with smooth real-valued coefficients A0, A1 and Φ is a com-
plex scalar field given by a smooth complex-valued function on R2. Introduce
topological charge given by the formula

k =
1

2π

∫

R2

F.

41
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It can be also defined as the degree of the map of the circle S1
R of sufficiently

large radius R into the topological circle coinciding with the image of Φ(S1
R).

The Euler–Lagrange equations for the action SλYMH have the form




∗d(∗F ) = Φ̄DΦ− ΦDΦ

�Φ =
λ

2
(|Φ|2 − 1)Φ.

where �Φ = ∗D(∗DΦ).
In the selfdual case (λ = 1) the functional S1

YMH may be rewritten, using
the Bogomolny transform, in the following form

S1
YMH(A,Φ) =

1

2

∫

R2

{
‖DΦ∓ i(∗DΦ)‖2 +

∣∣∣∣∗F ±
1

2
(|Φ|2 − 1)2

∣∣∣∣
2
}
d2x

which implies that

S1
YMH(A,Φ) ≥ π|k|,

and the equality is attained here if and only if the terms in the brackets
vanish. Rewrite them in the complex form by setting z = x0 + ix1, α =
1
2
(A0− iA1), ᾱ = 1

2
(A0 + iA1). Then the local minima of the functional S1

YMH

for k ≥ 0 will satisfy the equations





∂̄αΦ = 0

F01+
1

2
(|Φ|2 − 1) = 0

where F01 = ∂0A1 − ∂1A0, ∂̄α = ∂̄ − iᾱ, ∂̄ = ∂/∂z̄.
For k < 0 we obtain analogous equations





∂αΦ = 0

F01−
1

2
(|Φ|2 − 1) = 0.

Solutions of the first system of equations are called the vortices, solutions
of the second system are called the anti-vortices. In contrast with the Yang–
Mills–Higgs equations in R3 the local minima of S1

YMH in R2 exhaust all its
critical points. It is an effect of the two-dimensionality of the considered
model.
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3.1.2 Theorem of Taubes

A description of solutions of vortex equations was given by Taubes (cf. [13]).
Assume first that k ≥ 0 and {z1, . . . , zk} is an arbitrary collection of k points
in the complex plane some of which may coincide. Denote by kj the multiplic-
ity of the point zj in the collection {z1, . . . , zk}. Then there exists a unique
(up to gauge equivalence) C∞-smooth solution (A,Φ) of vortex equations
having the following properties:

1) the set of zeros of Φ coincides precisely with the collections of points
{z1, . . . , zk} (with the same multiplicities) and in a neighborhood of the
point zj

Φ ∼ cj(z − zj)
kj , cj 6= 0;

2) the topological charge k of the solution (A,Φ) is equal to the sum
∑
kj

over all distinct points in the collection {z1, . . . , zk}.

For k < 0 the result is formulated in a similar way, one should only replace
Φ with Φ̄ in the first condition and set k equal to −

∑
kj .

Any solution of Euler–Lagrange equations with finite action is gauge
equivalent either to some k-vortex, or |k|-anti-vortex solution depending on
the sign of k (cf. [13]).

We point out some general properties of solutions of Euler–Lagrange equa-
tions for the functional SλYMH with gauge group SU(2) on the Euclidean space
Rd with arbitrary d. In this case Euler–Lagrange equations have the form




D(∗F ) = ∗[DΦ,Φ]

�Φ =
λ

2
Φ(‖Φ‖2 − 1).

Consider first the Yang–Mills functional corresponding to λ = 0, Φ = 0.
We have collected the information on the existence of smooth solutions of
Euler–Lagrange equations for this functional in the following table

dimension
non-trivial solu-
tions

local minima
non-minimal so-
lutions

d > 4 no no no

d = 4 yes
instantons and anti-
instantons

yes

d < 4 no no no
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All these assertions extend also to general compact gauge groups G.
Consider now the Yang–Mills–Higgs SU(2)-equations for the functional

SλYMH on Rd. For d > 4 there are no non-trivial solution while in dimension
d = 4 any solution is gauge equivalent to a Yang–Mills field. For λ = 0 we
have the following table:

dimension
non-trivial solu-
tions

local minima
non-minimal so-
lutions

d > 4 no no no

d = 4 yes
instantons and anti-
instantons

yes

d = 3 yes monopoles yes
d = 2 no no no

The case λ = 1 was considered above. In the general case λ > 0 there
is only a Taubes conjecture asserting that for the Abelian Yang–Mills–Higgs
model, governed by the functional SλYMH on R2, in the case λ < 1 it should
exist for any charge k a unique (up to gauge equivalence and translations of
R2) critical point of this functional which is a local minimum. Moreover, all
topological charge will be concentrated in the unique zero of the function Φ
and the solution (A,Φ) will be central symmetric with respect to this zero.
For λ > 1 the functional SλYMH should have a unique critical point which is
stable if and only if the topological charge is equal to k = 0,±1.

From some physical considerations we can expect that there exists a dual-
ity between the critical points of the functional SλYMH and (probably singular)

solutions of the Euler–Lagrange equations for the functional S
1/λ
YMH.

3.2 Higgs bundles and Hitchin equations

3.2.1 Hitchin equations

Consider the duality equations in R2 which are obtained from the duality
equations in R4 under the condition that the coefficients of the connection
do not depend on two variables.

Let

A =
3∑

j=0

Ajdx
j
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be a G-connection on R4 with coefficients not depending on the varibales x2

and x3. Denote by A the form

A = A0dx
0 + A1dx

1

and
ϕ1 := A2, ϕ2 := A3, ϕ := ϕ1 − iϕ2.

Then the selfduality equations for the connection A will rewrite in the form





[∇0+i∇1, ϕ] = 0

FA =
i

2
[ϕ, ϕ∗]

where FA is the curvature of A on R2 and ∇ is the covariant derivative
generated by the connection A.

Introduce the complex coordinate z = x0 + ix1 on R2 and set

Φ =
1

2
ϕdz, Φ∗ =

1

2
ϕ∗dz̄.

Then the self-duality equations will take the form

{
∂̄AΦ = 0

FA+[Φ,Φ∗] = 0.

Here A is a connection in the principal G-bundle P → C, Φ is a smooth
(1, 0)-form on C with values in the complexified adjoint bundle ad CP , ∂̄A
is the ∂̄-operator of exterior covariant derivation generated by the (0, 1)-
component A0,1 of A. The above equations, called the Hitchin equations , are
conformally invariant so one consider them on an arbitrary Riemann surface
M (however, we shall restrict from now on to the case of compact Riemann
surfaces).

Let G = SU(2) and E → M be a complex vector bundle of rank 2
associated with the principal SU(2)-bundle P → M . The Hitchin equations
for Riemann surfaces M of genus 0 and 1 have no non-trivial solutions. On
the other hand such solutions do exist for Riemann surfaces M of genus g > 1
and will be studied later on in detail.

We close this section with the following remarks. Suppose that the genus
of M is strictly greater than 1 and the bundle E is decomposable, i.e. E =
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L⊕L∗ for some holomorphic line bundle L. Then the Hitchin equations take
the form of the vortex equation

F1 + 2(1− ‖α‖2)ω = 0

where α is a quadratic differential on M , ω is the Kähler form on M nor-
malized by the condition:

∫
M
ω = 2π, and F1 is the curvature of a U(1)-

connection on L. A unique for given α solution of the last equation deter-
mines onM the metric of constant negative curvature -4. Moreover, the space
of quadratic differentials on M , parameterizing the set of all solutions of this
equation, is naturally diffeomorphic to the Teichmüller space of metrics of
constant negative curvature on M .

We do not know if there is an analog of ADHM-construction for Hitchin
equations. If such constructions does exist then, by analogy with the 4-
dimensional and 3-dimensional cases, it should yield a non-trivial duality
transformation between solutions of Hitchin equations.

3.2.2 Higgs bundles

Let M be a compact Riemann surface of genus g ≥ 2 and E → M is a
Hermitian vector bundle provided with a smooth Hermitian metric H . Sup-
pose that E is provided with a holomorphic structure determined by the
∂̄-operator ∂̄E . To underline the availability of the holomorphic structure we
shall denote this holomorphic bundle by (E, ∂̄E) and the sheaf of its holo-
morphic sections by E . We shall often identify (E, ∂̄E) with the sheaf E .

If S ⊂ E is a holomorphic subbundle with quotient sheaf Q then the
smooth decomposition E = S ⊕Q allows to represent ∂̄E in the form

∂̄E =

(
∂̄S β
0 ∂̄Q

)
(3.1)

where β ∈ Ω0,1(M,Hom(Q, S)) is called the 2nd fundamental form of sub-
bundle S. In this case S can be given by the orthogonal projection π : E → S
having the following properties:

π2 = π, π∗ = π and (I − π)∂̄E = 0. (3.2)

These conditions imply that trπ = const and β = −∂̄Eπ. So we have a
bijective correspondence between

{
holomorphic
subbundles in E

}
←→

{
orthogonal projectors in E satisfying
conditions (3.2)

}
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Suppose that the bundle E is provided with a connection A with associ-
ated covariant derivative ∇ ≡ ∇A compatible with the Hermitian structure.
Such connection is called Hermitian and satisfies the condition

d〈s1, s2〉H = 〈dAs1, s2〉H + 〈s1, dAs2〉H

where dA is the exterior covariant differential generated by the connection
A and s1, s2 are smooth sections of E. The curvature FA of the Hermitian
connection A is given by a 2-form FA ∈ Ω2(M, adE) where adE denotes the
bundle of Hermitian endomorphisms of E. If the connection A induces a fixed
connection in the bundle detE (which is often assumed in the sequel) then
ad0E (resp. adC

0E) denotes the bundle of traceless skew-Hermitian (resp.
complex traceless) endomorphisms of E.

Holomorphic line bundles L→M are determined, as it is known, by the
divisors of the form

D =
N∑

i=1

mizi

where mi, i = 1, . . . , N , are integers, z1, . . . , zN are points ofM . The complex
line bundle, determined by the divisor D, is denoted by L = O(D) and
its degree degL, equal to c1(L), coincides with the degree of the divisor
degD =

∑N
i=1mi. The degree of a vector bundle E is by definition

degE := deg(detE).

We call by the slope of a holomorphic vector bundle E the quantity

µ(E) = degE/rankE.

In the case when the line bundle L = O(D) has a non-zero holomorphic
section the corresponding divisor is linearly equivalent to an effective divisor
(for which all mi ≥ 0) so degL ≥ 0.

We introduce the contraction operator Λ : Ω2(M) → Ω0(M) determined
by the equality

Λ(fω) = f

for any smooth function f on M . This definition is extended to the forms
from Ω2(M, adE).

If S is a holomorphic vector subbundle of a Hermitian holomorphic vector
bundle E , given by the orthogonal projector π, then there is an explicit
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formula for its degree, analogous to Chern–Weil formula

degS =
1

2π

∫

M

tr
(
πiΛF(∂̄E ,H)

)
ω −

1

2π

∫

M

|β|2ω. (3.3)

Definition 1. A holomorphic vector bundle E is called stable (resp. semistable)
if for any holomorphic vector subbundle S ⊂ E of rank 0 < rankS < rank E
the following inequality holds

µ(S) < µ(E) (resp. µ(S) ≤ µ(E)).

The bundle E is called polystable if it is the direct sum of stable bundles with
the same slope.

It is evident that all holomorphic line bundles are stable. Moreover, if
a holomorphic vector bundle E is (semi)stable and L is a holomorphic line
bundle then the bundle E ⊗ L is also (semi)stable.

The extension of a holomorphic vector bundle S via a holomorphic sub-
bundle Q is a holomorphic vector bundle E which can be included into the
exact sequence of sheaf homomorphisms

0 −→ S −→ E −→ Q −→ 0. (3.4)

The sequence (3.4) splits if there exists a map Q → E which is the right
inverse to the projection E → Q.

Problem 8. Describe extensions of the form

0 −→ O −→ E −→ O(p) −→ 0.

Which of these exact sequences split? Which of these extensions are stable?

A connection ∇ is called projectively flat if

iΛF∇ = µI

where µ = const. In this case the relation µ = µ(E) holds.

Theorem 4 (Narasimhan–Seshadri). A holomorphic vector bundle E → M
admits a projectively flat connection if and only if E is polystable.
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Definition 2. A Higgs bundle is a pair (E ,Φ) consisting of a holomorphic
vector bundle E and holomorphic section Φ of the bundle K ⊗ adE where
K is the canonical bundle of the manifold M . A pair (E ,Φ) is called stable
(resp. semistable) if for any Φ-invariant holomorphic subbundle S ⊂ E of
rank 0 < rankS < rankE the following inequality holds:

µ(S) < µ(E) (resp. µ(S) ≤ µ(E)).

A Higgs bundle (E ,Φ) is called polystable if it is the direct sum of stable
Higgs bundles with the same slope.

Problem 9. Let f : (E1,Φ1)→ (E2,Φ2) be a holomorphic homomorphism of
Higgs bundles, i.e. the relation Φ2f = fΦ1 holds. Suppose that the bundles
(Ei,Φi), i = 1, 2, are semistable and µ(E1) > µ(E2). Then f ≡ 0. If we have
the equality µ(E1) = µ(E2) and one of the bundles is stable then either f ≡ 0
or f is an isomorphism.

A Higgs subbundle in a Higgs bundle (E ,Φ) is a Φ-invariant holomorphic
subbundle S ⊂ E . The restriction ΦS := Φ|S converts this subbundle into
a Higgs bundle (S,ΦS) for which the embedding S →֒ E is a map of Higgs
bundles. In analogous way one can define the structure of Higgs bundle on
the quotient Q = E/S.

Definition 3. Let (E ,Φ) be a Higgs bundle. The Harder–Narasimhan filtra-
tion on (E ,Φ) (shortly: HN-filtration) is a filtration by Higgs subbundles of
the form

0 = (E0,Φ0) ⊂ (E1,Φ1) ⊂ . . . ⊂ (El,Φl) = (E ,Φ),

in which the quotients (Qi,ΦQi
) = (Ei,Φi)/(Ei−1,Φi−1) are semistable. It is

also required that the following inequalities hold:

µ(Qi) > µ(Qi−1).

The associated graded object

grHN(E ,Φ) =
l⊕

i=1

(Qi,ΦQi
)

in this case is uniquely determined by the isomorphism class of the bundle
(E ,Φ).

The collection ~µ(E ,Φ) = (µ1, . . . , µn) of n numbers, where each of µi’s
is repeated as many times as the rank of Qi, is called the HN-type(Harder–
Narasimhan type) of the Higgs bundle (E ,Φ). It is an important invariant of
Higgs bundles.
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3.2.3 The moduli spaces of Higgs bundles

Denote by AE the space of Hermitian connections in a Hermitian vector
bundle E → M of rank n. It is an infinite-dimensional affine manifold with
local model Ω1(M, adE).

The group of gauge transformations is by definition

GE = {g ∈ Ω0(M,EndE) : gg∗ = I}

(in the case when the bundle detE is fixed we impose on GE the additional
condition det g = 1). This group acts on AE by sending the covariant differ-
ential dA to the new covariant differential

dg(A) = g ◦ dA ◦ g
−1.

The space AE may be also considered as the space of complex structures
on E → M . Indeed, from every Hermitian connection on E → M we can
construct a ∂̄-operator given by the (0,1)-component of the connection. This
operator determines a complex structure on E since the (0,2)-component of
the curvature vanishes in the case of Riemann surfaces. On the other hand,
a ∂̄-operator on E → M determines a unique Hermitian connection on E
with the (0,1)-component equal to the original ∂̄-operator. Such connection
is called the Chern connection. The corresponding covariant differential dA
decomposes into the sum of two operators d′A and d′′A sending sections of E
to forms from Ω1,0(M,E) and Ω0,1(M,E) respectively.

Considering AE as the space of complex structures on E → M , we can
define an action of the complexified group of gauge transformations GC

E on
AE. Namely, if the original connection corresponds to the ∂̄-operator ∂̄E =
d′′A then the transformed connection g(A) will correspond to the ∂̄-operator
g ◦ ∂̄E ◦ g

−1.
The space of Higgs bundles, by definition, is identified with

BE = {(A,Φ) ∈ AE × Ω0(M,K ⊗ ad CE) : d′′AΦ = 0},

and its subspace, consisting of semistable Higgs bundles, is denoted by BssE .

Definition 4. The moduli space of semistable Higgs bundles of rank n (with
fixed detE) on M is identified with the categoric quotient

M
(n)
E = BssE //G

C
E.
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Recall the definition of the categorical quotient. Let X be a complex
manifold provided with a holomorphic action of a complex Lie group GC.
Introduce on X the following equivalence relation: x1 ∼ x2 if and only if
f(x1) = f(x2) for all holomorphic functions f invariant under the action of
the group GC. Denote by π : X → X/ ∼ the natural projection. We call
by the categorical quotient X//GC the Hausdorff topological space X/ ∼
provided with the structure sheaf O(X//GC) defined in the following way.
For the arbitrary open subset U ⊂ X/ ∼ the algebra O(X//GC)(U) consists
of continuous complex-valued functions on U which pull-back by the map π
to holomorphic GC-invariant functions on π−1(U).

In the case when X is a Stein space and the group GC is reductive (i.e.
it coincides with the compexification of a real compact Lie group) the space
X//GC is also Stein and projection π is an open holomorphic map. More-
over, every fibre of π is connected and contains a unique closed orbit. Note
that these assertions are, generally speaking, not true for the usual quotient
coinciding with the space of orbits X/ ∼.

The quotient GC
E/GE may be identified with the space of Hermitian metrics

on E. Hence we can study the behaviour of various functionals on the orbits
of the group GC

E in AE/GE by two methods: either by changing the complex
structure ∂̄E , fixing simultaneously the Hermitian metric H , or by changing
the Hermitian metric H , fixing simultaneously the complex structure ∂̄E .

Introduce the notation:

D′′ = d′′A + Φ, D′ = d′A + Φ∗.

The Kähler form ω and Hermitian metric H on E determine an L2-inner
product on E and EndE. For this inner product in the case Φ = 0 we have
the following Kähler identities:

(D′′)∗ = −i[Λ, D′], (D′)∗ = i[Λ, D′′].

Problem 10. How the Kähler identities look in the case Φ 6= 0.

The infinitesimal structure of the moduli space is determined by the de-
formation complex C(A,Φ) which is obtained by the differentiation of the
condition d′′AΦ = 0 and the action of the group of gauge transformations

0 −→ Ω0(M, ad CE)
D′′

−→ Ω1,0(M, ad CE)⊕ Ω0,1(M, ad CE)
D′′

−→

D′′

−→ Ω1,1(M, ad CE) −→ 0.
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The vanishing (D′′)2 = 0 is provided by the condition d′′AΦ = 0.
A Higgs bundle is called simple if H0(C(A,Φ)) ∼= C (or zero in the

case of a fixed bundle detE. Note that by Serre duality H0(C(A,Φ)) ∼=
H2(C(A,Φ)).

Problem 11. Prove that a stable Higgs bundle is necessarily simple. Hint:
use Problem 9.

Proposition 1. For any simple Higgs bundle (E ,Φ), provided with a Her-

mitian connection A, the moduli space M
(n)
E at a point (A,Φ) is a smooth

complex manifold of dimension (n2−1)(2g−2), and its tangent space at this
point is identified with

H1(C(A,Φ)) ∼= {(ϕ, β) : d′′Aϕ = −[Φ, β], (d′′A)∗β = iΛ[Φ∗, ϕ]}.

Problem 12. Describe the moduli space M2
E of Higgs bundles of rank 2 for

the bundle E = K1/2 ⊕K−1/2 where K is the canonical bundle.

For a given Higgs bundle (E ,Φ) the coefficient of λn−i in the decomposi-
tion det(λ + Φ) is a holomorphic section of the bundle Ki, i = 1, . . . , n. (In
the case of a fixed detE we have trΦ = 0 so the decomposition starts from
i = 2). These sections are invariant under the action of the group GC

E by
conjugations so the following Hitchin map

h : M
(n)
E −→

n⊕

i=1

H0(M,Ki)

is correctly defined and is a proper map.

3.2.4 Hitchin–Kobayashi correspondence

The Hitchin equation for a Higgs bundle (E ,Φ) with trivial bundle E has the
form

FA + [Φ,Φ∗] = 0 (3.5)

where Φ is a (1,0)-form with values in EndE. In the case of bundles E of
non-zero degree this equation takes on the form

f(A,Φ) := iΛ(FA + [Φ,Φ∗]) = µ (3.6)

where µ = µ(E).
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As we have pointed out before, the equation (3.5) may be considered from
the two points of view: either as an equation on the Hermitian metric H with
foxed complex structure ∂̄E , or as an equation on the complex structure ∂̄E
with fixed metric H .

The equation (3.5) is an equation on the minima of the Yang–Mills–Higgs
functional given on holomorphic pairs (A,Φ) by the formula

YMH(A,Φ) =

∫

M

‖FA + [Φ,Φ∗]‖2ω.

The Euler–Lagrange equations for this functional have the form

dAf(A,Φ) = 0, [Φ, f(A,Φ)] = 0. (3.7)

The metric, for which these equations hold, is called critical . For such met-
ric the bundle (E ,Φ) splits into the direct sum of Higgs bundles being the
solutions of equations (3.5) with different slopes.

Proposition 2. If a Higgs bundle (E ,Φ) admits a metric satisfying the equa-
tion (3.5) it is polystable.

Proof. Suppose that S ⊂ E is a proper Φ-invariant subbundle. Denote by
π the operator of orthogonal projection to S and by β = −∂̄Eπ its 2nd
fundamental form. Since S is Φ-invariant we have (I − π)Φπ = 0, i.e. Φπ =
πΦπ and πΦ∗ = πΦ∗π. It implies, in particular, that

tr(π[Φ,Φ∗]) = tr(πΦΦ∗)− tr(πΦ∗Φ) = tr(πΦΦ∗)− tr(ΦπΦ∗) =

= tr(πΦΦ∗π)− tr(ΦπΦ∗π) = tr(πΦΦ∗π)− tr(πΦπΦ∗π) =

= tr(πΦ(I−π)Φ∗π) = tr(πΦ(I−π)(I−π)Φ∗π) = tr(πΦ(I−π)(πΦ(I−π)∗)

whence tr(πiΛ[Φ,Φ∗]) = |πΦ(I − π)|2. Now from equation (3.5) and the
formula (3.3) for the degree we get

degS = rank(S)µ(E)−
1

2π

(
‖πΦ(I − π)‖2 + ‖β‖2

)

which implies that µ(S) ≤ µ(E). Moreover, the equality here is possible if
and only if the two last terms from the right in the last formula vanish, in
other words, if the holomorphic structure and Higgs field split. We prove the
assertion of proposition by continuing this process.
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Theorem 5 (Hitchin–Simpson). If a Higgs bundle (E ,Φ) is polystable then
it admits a metric satisfying the equation (3.5).

Note that in the case of line bundles L the result is proved sufficiently
easy. Indeed, in this case the term [Φ,Φ∗] vanishes so the equation (3.6) is
equivalent to the condition of existence of a metric of constant curvature on
L. Let H be a Hermitian metric on E. Consider a conformally equivalent
metric Hϕ = eϕH . For it

F(∂̄L,Hϕ) = F(∂̄L,H) + ∂∂̄ϕ

and the problem of determination of the desired metric is reduced to the
problem of finding a function ϕ satisfying the equation

∆ϕ = 2iΛF(∂̄L,H) − 2degL.

It has a solution if and only if the integral of the right hand side vanishes
which is evidently true in the considered case.

The proof of the theorem in general case uses the follwoing argument due
to Donaldson. Introduce for a Hermitian endomorphism ϕ the quantities

ν(ϕ) =
n∑

j=1

|λj|, N2(ϕ) +

∫

M

ν2(ϕ)
ω

2π

where {λj} are the eigenvalues of ϕ. Consider the functional

J(A,Φ) = N
(
f(A,Φ) − µ(E)

)
.

The main role in the proof of Hitchin–Simpson theorem is played by

Lemma 1. In every orbit of the complex group J C
E of gauge transformations

there exists a sequence of points {Aj,Φj} having the following properties:

1. the sequence {Aj,Φj} is minimizing for the functional J ;

2. sup |f(Aj ,Φj)| are bounded uniformly with respect to j;

3. ‖dAj
f(Aj ,Φj)‖L2 and ‖[f(Aj ,Φj),Φj ]‖L2 tend to zero for j →∞.

Using this lemma and Uhlenbech compactness theorem we can construct
a Higgs bundle with the metric satisfying Hitchiun equation (3.5).

The proof of this lemma theorem employs the flow generated by the Yang–
Mills–Higgs functional.
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Definition 5. The Yang–Mills–Higgs flow for a pair (A,Φ) is the flow gen-
erated by the system of equations





∂A

∂t
= −d∗A(FA + [Φ,Φ∗])

∂Φ

∂t
= [Φ, iΛ(FA + [Φ,Φ∗])]

These equations should be supplemented by the condition d′′AΦ = 0 which
plays the role of constraint for the given system since it is preserved under
the action of the complex group of gauge transforms. The above equations
define the L2-gradient flow for the Yang–Mills–Higgs functional. Moreover,
we have the following

Lemma 2. For all t ≥ 0

d

dt
YMH(A,Φ) = −2‖dAf(A,Φ)‖

2
L2 − 4‖[Φ, f(A,Φ)]‖

2
L2 .

This lemma implies that the Yang–Mills–Higgs functional decreases along
the flow and the following inequality holds

∫
∞

0

dt
{
2‖dAf(A,Φ)‖

2
L2 + 4‖[Φ, f(A,Φ)]‖

2
L2

}
≤ YMH(A0,Φ0).

Denote by Bmin
E the set of Higgs bundles satisfying the Hitchin equa-

tion (3.5). The introduced Yang–Mills–Higgs flow determines an infinite-
dimensional Morse theory in which the points Bmin

E correspond to the minima
of the Yang–Mills–Higgs functional and critical metrics to the critical points
of higher Morse indices. In fact we have the following

Theorem 6 (Wilkin). The Yang–Mills–Higgs functional determines a GE-
invariant deformation retraction of the space Bss

E to the space Bmin

E .

3.3 Harmonic maps and σ-models

3.3.1 Harmonic maps

Let Mm and Nn be Riemannian manifolds provided with Riemannian metrics
g and h respectively. Consider a smooth map ϕ : M → N . Its energy is the
functional of the form

E(ϕ) =
1

2

∫

M

|dϕ(p)|2vol
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where dϕ is the differential of the map ϕ, vol is the volume element of the
Riemannian metric g.

Choose the local coordinates (xi) at a point p ∈ M and the local co-
ordinates (uα) at its image q = ϕ(p) ∈ N . In these coordinates the local
expression for |dϕ(p)|2 will have the form

|dϕ(p)|2 =
∑

i,j

∑

α,β

gij
∂ϕα

∂xi
∂ϕβ

∂xj
hαβ

where ϕα = ϕα(x) are the components of the map ϕ, gij is the matrix inverse
to the matrix (gij) of the metric tensor g. The volume element vol is given
in the chosen local coordinates by the formula

vol ∼
√
|det(gij|dx

1 ∧ . . . ∧ dxn.

The differential of the map ϕ : M → N may be also defined in a more
invariant way as a section dϕ of the bundle

T ∗M ⊗ ϕ−1(TN) −→M

where ϕ−1(TN) is the inverse image of the tangent bundle TN under the
map ϕ. By definition, the fiber ϕ−1(TN)p at a point p ∈ M is the tangent
space Tϕ(p)N to N at q = ϕ(p).

The bundle T ∗M⊗ϕ−1(TN) is provided with a natural Riemannian met-
ric induced by the metrics g and h.

Problem 13. Find an explicit expression for this metric in local coordinates.

In the case when M and N are open subsets of Euclidean spaces Rm and
Rn respectively the norm of the differential of the map ϕ = (ϕ1, . . . , ϕn) :
M → N is given by the expresiion

|dϕ(x)|2 =

m∑

i=1

n∑

α=1

∣∣∣∣
∂ϕα

∂xi

∣∣∣∣
2

=

m∑

i=1

∣∣∣∣
∂ϕ

∂xi

∣∣∣∣
2

,

while the energy E(ϕ) is given by the Dirichlet integral

E(ϕ) =
1

2

∫

M

m∑

i=1

∣∣∣∣
∂ϕ

∂xi

∣∣∣∣
2

dx1 ∧ . . . ∧ dxm.
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The extremals of this functional coincide with the maps ϕ = (ϕα) with
components ϕα being harmonic functions.

A smooth map ϕ : M → N of Riemannian manifolds is called harmonic
if it is extremal for the energy functional E(ϕ) with respect to smooth vari-
ations of ϕ with compact supports.

We shall find now the Euler–Lagrange equations for the functional E(ϕ).
Write them first in the local coordinates (xi) at a point p ∈ M and (uα) at
the point q = ϕ(p) ∈ N . Suppose that the Riemannian connections M∇ of
the manifold M and N∇ of the manifold N are given in these coordinates by
the Kristoffel symbols

M∇ ∼ MΓkij and N∇ ∼ NΓγαβ

respectively. In these coordinates the Euler–Lagrange equations for the func-
tional E(ϕ) take on the form

∑

i,j

gij

{
∂2ϕγ

∂xi∂xj
−
∑

k

MΓkij
∂ϕγ

∂xk
+
∑

α,β

NΓγαβ
∂ϕα

∂xi
∂ϕβ

∂xj

}
=

= ∆Mϕ
γ +

∑

i,j

gij
∑

α,β

NΓγαβ
∂ϕα

∂xi
∂ϕβ

∂xj
= 0, γ = 1, . . . , n.

The operator

∆M =
∑

i,j

gij

(
∂2ϕγ

∂xi∂xj
−
∑

k

MΓkij
∂ϕγ

∂xk

)

is called the Laplace–Beltrami operator of the manifold M determined by the
metric g. It is a linear differential operator of the 2nd order in ϕγ. The term

∑

i,j

gij
∑

α,β

NΓγαβ
∂ϕα

∂xi
∂ϕβ

∂xj
,

entering Euler–Lagrange equations, depends on the geometry of the manifold
N , i.e. on the geometry of the image of the map ϕ, and is given by the
expression quadratic in derivatives of the map ϕ.

For N = Rn the Euler–Lagrange equations, written above, convert into
the system of Laplace–Beltrami equations on the components ϕγ of the map
ϕ with solutions being harmonic functions ϕγ on M .
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We write now the Euler–Lagrange equations for the energy of a map
ϕ : M → N in a more invariant way. Recall that the differential dϕ may be
considered as a section of the bundle

T ∗M ⊗ ϕ−1(TN) −→M.

The Riemannian connections M∇ and N∇ generate a natural connection ∇
in this bundle. In its terms the Euler–Lagrange equations may be written in
a concise form

tr(∇dϕ) = 0.

The vector field τϕ := tr(∇dϕ) is called the stress field of ϕ.
We turn now to the case of almost complex manifolds which is more

important for us. We shall assume that the Riemannian metric g on the
almost complex manifold (M,J) is Hermitian, i.e. it is compatible with the
almost complex structure J in the sense that g(JX, JY ) = g(X, Y ) for any
vector fields X, Y ∈ TM . An almost complex manifold (M,J), provided with
the Hermitian metric g, is called almost Hermitian. In the case when the
almost complex structure J is integrable such manifold is called Hermitian.

We introduce in the almost Hermitian manifold (M, g, J) the form ω by
setting ω(X, Y ) = g(JX, Y ) for X, Y ∈ TM . A manifold M is called almost
Kähler if the form ω is closed. In this case ω is called the Kähler form. If
the form ω is also non-degenerate (in this case ω determines a symplectic
structure on M) and the almost complex structure is integrable then such
manifold (M, g, J, ω) is called Kähler .

Let ϕ : M → N be a smooth map of almost complex manifolds. It is called
almost holomorphic or pseudoholomorphic if its tangent map ϕ∗ : TM → TN
commutes with almost complex structures, i.e.

ϕ∗ ◦
MJ = NJ ◦ ϕ∗

where MJ (resp. NJ) is an almost complex structure on M (resp. N). The
map ϕ is called almost anti-holomorphic if ϕ∗ anti-commutes with almost
complex structures, i.e.

ϕ∗ ◦
MJ = −NJ ◦ ϕ∗.

Let ϕ : M → N be a smooth map of almost complex manifolds. We
extend its tangent map ϕ∗ : TM → TN complex-linearly to a map ϕ∗ :
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TCM → TCN of complexified tangent bundles. The obtained map, in accor-
dance with decompositions

TCM = T 1,0M ⊕ T 0,1M, TCN = T 1,0N ⊕ T 0,1N,

may be represented in the block form with blocks given by four operators

∂′ϕ :T 1,0M −→ T 1,0N, ∂
′′

ϕ : T 0,1M −→ T 1,0N,

∂′ϕ̄ = ∂′′ϕ :T 1,0M −→ T 0,1N, ∂
′′

ϕ̄ = ∂′ϕ : T 0,1M −→ T 0,1N.

If we identify ϕ∗ with differential dϕ, considered as a section of the bundle

T ∗,CM ⊗ ϕ−1(TCN) −→ M,

then the introduced operators will admit an analogous interpretation as sec-
tions of the corresponding subbundles of the above bundle. For example, the
operator ∂′ϕ may be identified with a section of the bundle

Λ1,0M ⊗ ϕ−1(T 1,0N).

In terms of the introduced operators the map ϕ is almost holomorphic (resp.
almost anti-holomorphic) if

∂
′′

ϕ = 0 (resp. ∂′ϕ = 0).

In the case when the manifolds M and N are almost Hermitian the energy
of a smooth map ϕ : M → N is represented as the sum

E(ϕ) = E ′(ϕ) + E ′′(ϕ)

where

E ′(ϕ) =

∫

M

|∂′ϕ|2vol, E ′′(ϕ) =

∫

M

|∂′′ϕ|2vol.

Using this decomposition, criterion of holomorphicity of the map ϕ may be
reformulated in the following way: ϕ is holomorphic (resp. anti-holomorphic)
⇐⇒ E ′′(ϕ) = 0 (resp. E ′(ϕ) = 0).

We can ask if the (anti)holomorphic maps of almost Hermitian manifolds
are automatically harmonic? The answer to this question is positive for
compact almost Kähler manifolds.
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Let ϕ : M → N be a smooth map of compact almost Kähler manifolds.
Then the quantity

k(ϕ) = E ′(ϕ)− E ′′(ϕ)

depends only on the homotopy class of the map ϕ. Since

E(ϕ) = 2E ′(ϕ)− k(ϕ) = 2E
′′

(ϕ) + k(ϕ)

it implies that the critical points of the functionals E(ϕ), E ′(ϕ) and E ′′(ϕ)
in this case coincide and

E(ϕ) ≥ |k(ϕ)|.

Hence, (anti)holomorphic maps ϕ realize absolute minima of the energy E(ϕ)
in a given topological class: for k(ϕ) ≥ 0 the minima are realized on almost
holomorphic maps with E

′′

(ϕ) = 0, for k(ϕ) ≤ 0 they are realized on almost
anti-holomorphic maps with E ′(ϕ) = 0.

In conclusion we consider in more detail the case of harmonic maps from
Riemann surfaces to Riemannian manifolds. Let ϕ : M → N be a smooth
map from a Riemann surface M into a Riemannian manifold N . The tangent
map ϕ∗ : TM → TN may be extended complex-linearly to a map ϕ∗ :
TCM → TCN of complexified tangent bundles and identified with the section
dϕ of the bundle

T ∗,CM ⊗ ϕ−1(TCN) −→M.

So the differential dϕ may be represented as the sum

dϕ = δϕ+ δ̄ϕ

where δϕ is a section of the bundle Λ1,0M ⊗ ϕ−1(TCN), and δ̄ϕ is a section
of the bundle Λ0,1M ⊗ ϕ−1(TCN).

Denote, as before, by ∇ the natural connection on the bundle T ∗M ⊗
ϕ−1(TN), generated by the Riemannian connections M∇ and N∇, and extend
it complex-linearly to the complexified bundle T ∗,CM⊗ϕ−1(TCN). Introduce
the operators, acting on sections of this bundle, which in terms of the local
complex coordinate z on M are defined in the following way

δ := ∇∂/∂z , δ̄ := ∇∂/∂z̄ .

Then the condition of harmonicity of the map ϕ : M → N will be written in
the form

δ̄δϕ = ∇∂/∂z̄(δϕ) = ∇∂/∂z̄(∇∂/∂zϕ) = 0
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or in equivalent form

δδ̄ϕ = ∇∂/∂z(δ̄ϕ) = ∇∂/∂z(∇∂/∂z̄ϕ) = 0.

In the case when the manifold N is Kähler the obtained harmonicity
conditions may be further on simplified, using the relations

δϕ = ∂′ϕ+ ∂′′ϕ, δ̄ϕ = ∂′′ϕ+ ∂′ϕ.

Since for a Kähler manifold N the connection N∇ preserves the decomposi-
tion TCN = T 1,0N ⊕ T 0,1N into the direct sum of (1, 0)- and (0, 1)-subspace
(why?) the harmonicity condition can be rewritten in the form

δ̄∂′ϕ = 0⇔ δ∂′′ϕ = 0.

3.3.2 Example: harmonic maps of the Riemann sphere

into itself

We start from the following problem arising in the theory of ferromagnetism.
Suppose that at any point x = (x1, x2) of the Euclidean plane R2 it is given
a vector ϕ(x) ∈ R3 of the unit length smoothly depending on x. In other
words, it is given a smooth map ϕ : R2 → S2, x 7→ ϕ(x), of the plane R2 into
the unit sphere S2 ⊂ R3. The energy of the map ϕ is given by the Dirichlet
integral

E(ϕ) =
1

2

∫

R2

|dϕ|2dx1dx2

where |dϕ|2 =
∣∣∣ ∂ϕ∂x1

∣∣∣
2

+
∣∣∣ ∂ϕ∂x2

∣∣∣
2

.

In order to guarantee the finiteness of the energy E(ϕ) <∞ it is natural
to impose on ϕ the following asymptotic condition:

ϕ(x) −→ ϕ0 uniformly for |x| → ∞

where ϕ0 is a fixed point of S2. Under this condition the map ϕ : R2 → S2

will extend to a continuous map

ϕ : S2 = R2 ∪ {∞} −→ S2.

Such maps ϕ : S2 → S2 have a topological invariant, namely the degree of
the map given by the formula

degϕ =

∫

R2

ϕ∗ω
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where ω is the normalized volume form on the sphere:
∫
S2 ω = 1 and ϕ∗ω is

the preimage of ω under the map ϕ.
Consider the following problem: find all extremals of the functional E(ϕ)

in the class of smooth maps ϕ : R2 → S2 with finite energy and given degree
k = degϕ.

To solve this problem it is convenient to introduce the complex coordinate
z = x1 + ix2 in the definition domain R2 ≈ C and stereographic complex
coordinate w in the image S2 \ {∞}. In these coordinates the expression for
the energy of the map ϕ = w(z) will take the form

E(ϕ) = 2

∫

C

|∂w/∂z|2 + |∂w/∂z̄|2

(1 + |w|2)2
|dz ∧ dz̄|,

while the formula for the degree ϕ converts into

degϕ =
1

2π

∫

C

|∂w/∂z|2 − |∂w/∂z̄|2

(1 + |w|2)2
|dz ∧ dz̄|.

Comparing the last two formulas we see that

E(ϕ) ≥ 4π|degϕ|.

Moreover, the equality here can be attained only in the following cases:

• if k = degϕ ≥ 0 then for ∂w/∂z̄ ≡ 0, i.e. on holomorphic functions
ϕ = w(z);

• if k = degϕ < 0 then for ∂w/∂z ≡ 0, i.e. on anti-holomorphic functions
ϕ = w(z).

Hence, holomorphic functions ϕ = w(z) realize minima of the energy E(ϕ)
in topological classes with k ≥ 0, while anti-holomorphic maps ϕ = w(z)
realize minima of the energy E(ϕ) in topological classes with k < 0. For
minimizing maps ϕ the value of the energy E(ϕ) is equal to 4π|k|.

Let us find concrete formulas for minimizing maps. Suppose for definite-
ness that k = degϕ > 0. Using the invariance of E(ϕ) with respect to
rotations of the sphere S2 in the image, fix the asymptotic value ϕ0 setting
it equal to ϕ0 = w0 = 1.

We have to describe the holomorphic maps of the Riemann sphere S2 =
R2 ∪ {∞} into itself having the degree k and equal to 1 at infinity. Such
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maps are given by rational functions of the form

ϕ = w(z) =

k∏

j=1

z − aj
z − bj

where aj 6= bj are arbitrary complex numbers. Analogous description admit
the anti-holomorphic maps minimizing E(ϕ) for k < 0.

Note that the space of solutions of our problem depends on 4k real pa-
rameters (or 4k + 2 real parameters if we add rotations of the sphere S2 in
the image).

We have described all local minima of the energy functional E(ϕ).

Problem 14. Prove that the energy functional E(ϕ) has no other extremals
apart from local minima. It is the effect of the two-dimensionality of the
considered problem.

3.3.3 Twistor interpretation of harmonic maps

In Section 1.2.5 we have constructed for arbitrary even-dimensional Rieman-
nian manifold N the twistor bundle

π : Z = J (N) −→ N

and provided the twistor space Z with almost complex structure J 1. In this
section we demonstrate how one can use this twistor bundle to solve the
problem of construction of harmonic maps from compact Riemann surfaces
into Riemannian manifolds.

Recall that according to Penrose twistor program any problem of Rie-
mannian geometry on manifold N should reduce to some problem of com-
plex geometry on its twistor space Z = J (N). If we believe in this Penrose
thesis then we can suppose that harmonic maps ϕ : M → N from a compact
Riemann surface M to N should arise from the pseudoholomorphic maps
ψ : M → (Z,J 1) as projections of the latter maps to N , i.e. ϕ = π ◦ ψ:

Z = J (N)

π

��
P1

ψ
99t

t
t

t
t

ϕ
// N
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And this is almost true. It turns out that the projections of pseudoholomor-
phic maps ψ : M → (Z,J 1) to N indeed satisfy differential equations of 2nd
order on N . However, these equations are not harmonic but ultrahyperbolic,
i.e. equations of harmonic type but with ”wrong” signature (n, n) instead of
the required signature (2n, 0).

So in order to construct harmonic maps ϕ : M → N as projections of
pseudoholomorphic maps ψ : M → Z we should change the definition of the
almost complex structure on the twistor space Z = J (N).

Namely, in terms of the vertical-horizontal decomposition

TJ (N) = V ⊕H

the required almost complex structure J 2 on J (N) should be defined as

J 2 = (−J v)⊕ J h.

This almost complex structure on J (N) was introduced by Eells and Salamon
and precisely this structure, as we shall see, is responsible for the twistor
interpretation of harmonic maps.

Before we switch to the construction of harmonic maps as projections of
pseudoholmorphic ones, consider the problem of integrability of the intro-
duced almost complex structures J 1 and J 2.

We have the following Rawnsley theorem [16]: the almost complex struc-
ture J 1 on the bundle J (N) is integrable if and only if N is conformally
flat, i.e. N is conformally equivalent to a flat space. Recall that a map
ϕ : (M, g) → (N, h) of Riemannian manifolds is called conformal if the in-
duced metric ϕ∗h on M is conformally equivalent to the Riemannian metric
g of the manifold M , i.e. ϕ∗h = λg for some smooth positive function λ on
M .

Concerning the almost complex structure J 2 on J (N), it is never inte-
grable. We can explain this fact in the following way. Using the definition of
the almost complex structure J 2, it is not difficult to show that if it would
be integrable then all local J 2-holomorphic curves f : U → J (N) should be
horizontal, i.e. their tangent spaces should belong to the horizontal distribu-
tion H . On the other hand, if (J (N),J 2) would be a complex manifold then
it should be possible to issue a local holomorphic curve on it in any complex
tangent direction.

Taking into account the non-integrability of the almost complex structure
J 2 there might be doubts if it might be useful for the description of har-
monic maps. Indeed, the non-integrable almost complex strutures may be
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quite ”bizarre” — for example, they may have even locally no non-constant
holomorphic functions. However, in the considered problem we have to deal,
fortunately, not with holomorphic functions f : Z → C on the twistor space
Z, but with a dual object, namely holomorphic maps ψ : M → Z from
Riemann surfaces M to Z. Such map ψ is holomorphic with respect to the
almost complex structure J 2 on Z if and only if it satisfies the Cauchy–
Riemann equation ∂̄Jψ = 0 with respect to the induced almost complex
structure J := ψ∗(J 2) on M . But on a Riemann surface any almost complex
structure is integrable (why?). In particular, the Cauchy–Riemann equation
above has many local solutions.

The next theorem lies in the basis of the twistor approach to the con-
struction of harmonic maps.

Theorem 7 (Eells–Salamon theorem). The twistor bundle

π : (J (N),J 2) −→ N

has the following property: projection ϕ = π◦ψ of an arbitrary J 2-holomorphic
map ψ : M → J (M) to N is a harmonic map.

Since the projection of any J 2-holomorphic curve ψ : M → J (M) is
a harmonic map, one can use these pseudoholomorphic curves to construct
harmonic maps ϕ : M → N . Is it possible to construct in this way all
harmonic maps of this type? In other words, when a given harmonic map
ϕ : M → N is the projection of some J 2-holomorphic curve ψ : M → J (M)?
It turns out that if a map ϕ : M → N is obtained as the projection of some
J 2-holomorphic curve in J (M) then it should be not only harmonic but also
conformal.

Conversely, any harmonic conformal map ϕ : M → N from a compact
Riemann surface M to an oriented Riemannian manifold N is locally the
projection of some J 2-holomorphic curve ψ : M → J (M).

The considered bundle J (M) → N of Hermitian structures on N is not
a unique twistor bundle which can be used for the construction of harmonic
bundles. Starting from the bundle J (M) → N , one can also define other
twistor bundle Z → N with the help of the following method proposed by
Rawnsley [16].

Let p : Z → N be a smooth bundle having the fibers which are complex
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manifolds with complex structures smoothly depending on the point q ∈ N :

Z
j

//

p
��?

??
??

??
? J (N)

π
||xx

xxxxxx

N

Suppose that we have a fiberwise map j : Z → J (N) which is holomorphic on
the fibers. We also assume that we have on the bundle p : Z → N a smooth
horizontal distribution ZH which is sent by the map j∗ to the horizontal
distribution H on J (N). Then on ZH we shall have an almost complex
structure ZJ h given by the preimage of the almost complex structure J h

on H under the map j. Using this horizontal almost complex structure
ZJ h on ZH and given vertical complex structure on the fibers of the bundle
p : Z → N , we can introduce on Z almost complex structures ZJ 1 and
ZJ 2 in the same way as in the case of the bundle π : J (N) → N . It is
clear that the map j is almost holomorphic with respect to both introduced
structures so that p : Z → N is the twistor bundle over N in the same sense
as π : J (N)→ N .

Let us give a concrete example of application of the described method.
Let N be a Kähler manifold of dimension m. Denote by

Z := Gr(T
1,0N) −→ N

the complex Grassmannian bundle with the fiber at q ∈ N given by the
Grassmann manifold Gr(T

1,0
q N) of complex subspaces of dimension r in the

complex vector space T 1,0
q N . If we denote by U(N) → N the principal

U(m)-bundle of unitary frames on N then

Z = U(N)⊗U(m) Gr(C
m).

In the case of a Kähler manifold N the Riemannian connection N∇ deter-
mines a connection in the bundle U(N) and so defines a horizontal distribu-
tion on the space Z. A complex structure on the fibers of Z → N is induced
by the natural complex structure on the Grassmann manifold Gr(C

m). We
construct now the map

j : Z −→ J (N)

by setting for a subspace W ∈ Gr(T
1,0
q N):

j(W ) =

{
NJ on (W ⊕W ) ∩ TqN ,

−NJ on
[
(W ⊕W ) ∩ TqN

]⊥
.
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The constructed map j : Z → J (N) satisfies the conditions of Rawnsley
method which implies that the Grassmannian bundle Gr(T

1,0N) → N is
a twistor bundle meaning that the projection of any J 2-holomorphic map
ψ : M → Gr(T

1,0N) from a compact Riemann surface M to the manifold N
is a harmonic map ϕ : M → N . As we have pointed out before such map is
necessarily conformal.

In the case r = 1 it is possible to invert the given twistor construction,
in other words, to construct for arbitrary conformal harmonic map ϕ : M →
N its twistor pull-back to a J 2-holomorphic map ψ : M → G1(T

1,0N).
Note that the Grassmannian bundle G1(T

1,0N) → N coincides with the
projectivization P(T 1,0N)→ N of the bundle T 1,0N → N .

Suppose that it is given a conformal harmonic map ϕ : M → N which
is not anti-holomorphic (for anti-holomorphic, as well as holomorphic maps
the problem of construction of their twistor pull-backs is of no interest). Its
differential δϕ is written in the form

δϕ = ∂′ϕ+ ∂′′ϕ.

If the map ϕ is not anti-holomorphic then ∂′ϕ(∂/∂z) defines a section of
the bundle ϕ−1(T 1,0N) which is not identically zero and holomorphic with
respect to the complex structure on this bundle induced by the Riemannian
connection N∇. This section can have only isolated zeros and outside these
zeros the twistor pull-back ψ : M → P(T 1,0N) is given by the formula

ψ = [∂′ϕ(∂/∂z)] .

In other words, the value ψ(p) of the map ψ at a point p ∈ M coincides
with the complex line in T 1,0

ϕ(p)N generated by the (1, 0)-component of the

vector ϕ∗(∂/∂z). Using the holomorphicity of the constructed line subbundle
in the bundle ϕ−1(T 1,0N), we can extend it to the isolated zeros of the
section ∂′ϕ(∂/∂z) (a variant of Riemann theorem on cancellation of isolated
singularities of holomorphic functions) thus obtaining the desired map

ψ : M → P(T 1,0N).

The constructed map ψ is J 2-holomorphic if ϕ is conformal.
Restricting the class of admissible Riemannian manifolds (as in the ex-

ample where we have considered the class of Kähler manifolds N), we can
construct new examples of twistor spaces using the Rawnsley method. The
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general idea is to choose for every class of Riemannian manifolds N as an ap-
propriate twistor bundle the bundle of complex structures which are related
to the geometry of the manifolds from the considered class.

3.3.4 Harmonic spheres conjecture

In Section 2.2.2 we have given the ADHM-construction which allows to de-
scribe completely the moduli space of instantons on R4. This construction
has a two-dimensional reduction proposed by Donaldson [8].

The Donaldson theorem asserts that there exists a natural bijective cor-
respondence between the moduli space of G-instantons on R4 and the set
of based equivalence classes of holomorphic GC-bundles on CP2 which are
holomorphically trivial on the projective line CP1

∞
at ”infinity” . The based

equivalence means that we consider only isomorphisms of holomorphic bun-
dles which are equal to identity at the based point on CP1

∞
.

For us it is more convenient to use another formulation of Donaldson
theorem given in Atiyah’s paper [1]. In this formulation the moduli space of
G-instantons on R4 is identified with the set of classes of based equivalence of
holomorphicGC-bundles on the product CP1×CP1 which are holomorphically
trivial on the union CP1

∞ ∪CP1
∞ of projective lines at ”infinity” :

{
moduli space of G-
instantons on R4

}
←→





equivalence classes of holomorphic GC-
bundles on CP1×CP1 holomorphically
trivial on CP1

∞ ∪CP1
∞



 .

The role of the based point in the definition of based equivalence in this case
is played by the intersection point of projective lines at ”infinity” .

The set of equivalence classes in the right hand side of this correspondence
may be identified by Atiyah theorem with the set of based holomorphic maps
f : CP1 → ΩG sending ∞ ∈ CP1 to the origin o ∈ ΩG.

Indeed, fix some point z ∈ CP1. The restriction of a given holomor-
phic GC-bundle over CP1 × CP1 to the projective line CP1

z := CP1 × {z} is
determined by the transition function

Fz : S1 ⊂ CP1
z −→ GC

which extends to some neighborhood U of the equator S1 in CP1
z to a holo-

morphic map Fz : U ⊂ CP1
z → GC. The function Fz : S1 → GC may be

considered as an element of the loop group LGC so we obtain a map

F : CP1 ∋ z 7−→ Fz ∈ LG
C.
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In composition with the projection LGC −→ ΩGC = LGC/L+G
C it gives a

map
f : CP1 −→ ΩG.

The constructed map f is based and holomorphic if the original GC-bundle
over CP1×CP1 was holomorphic and trivial on CP1

∞∪CP1
∞. Atiyah theorem

asserts that there is a bijective correspondence

{
moduli space of G-
instantons on R4

}
←→

{
space of based holomorphic
maps f : CP1 → ΩG

}
.

Having the above result of Atiyah–Donaldson it is natural to propose
a conjecture obtained by the ”realification” of the given correspondence.
According to this conjecture, it should exist the following bijective corre-
spondence

{
moduli space of Yang–
Mills G-fields on R4

}
←→

{
space of based harmonic maps
h : CP1 → ΩG

}
.

The formulated conjecture remains unproved yet. The main difficulty is
that there is no ”real” analogue of Donaldson theorem. The Donaldson proof
is based on the monad method and is purely holomorphic.
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