RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Paramonov Petr Vladimirovich

Statistics Math-Net.Ru
Total publications: 26 (24)
in MathSciNet: 35 (33)
in zbMATH: 32 (30)
in Web of Science: 28 (26)
in Scopus: 16 (16)
Cited articles: 20
Citations in Math-Net.Ru: 192
Presentations: 15

Number of views:
This page:1646
Abstract pages:6953
Full texts:1356
References:675
E-mail:

http://www.mathnet.ru/eng/person8351
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=243492

Publications in Math-Net.Ru
1. New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$
P. V. Paramonov
Tr. Mat. Inst. Steklova, 298 (2017),  216–226
2. Tverberg's proof of the Jordan closed curve theorem
P. V. Paramonov, K. Yu. Fedorovskiy
Algebra i Analiz, 27:5 (2015),  207–220
3. Criteria for $C^m$-approximability by bianalytic functions on planar compact sets
M. Ya. Mazalov, P. V. Paramonov
Mat. Sb., 206:2 (2015),  77–118
4. Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces
A. Boivin, P. M. Gauthier, P. V. Paramonov
Mat. Sb., 206:1 (2015),  5–28
5. Conditions for $C^m$-approximability of functions by solutions of elliptic equations
M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy
Uspekhi Mat. Nauk, 67:6(408) (2012),  53–100
6. $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
A. Boivin, P. M. Gauthier, P. V. Paramonov
Tr. Mat. Inst. Steklova, 279 (2012),  219–226
7. On $C^m$-Extension of Subharmonic Functions from Lyapunov–Dini Domains to $\mathbb R^N$
P. V. Paramonov
Mat. Zametki, 89:1 (2011),  149–152
8. $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into $\mathbb R^N$
P. V. Paramonov
Mat. Sb., 199:12 (2008),  79–116
9. $C^m$-extension of subharmonic functions
P. V. Paramonov
Izv. RAN. Ser. Mat., 69:6 (2005),  139–152
10. $C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$
M. S. Mel'nikov, P. V. Paramonov
Izv. RAN. Ser. Mat., 68:6 (2004),  105–118
11. On uniform approximation by $n$-analytic functions on closed sets in $\mathbb C$
A. Boivin, P. M. Gauthier, P. V. Paramonov
Izv. RAN. Ser. Mat., 68:3 (2004),  15–28
12. On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions
J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy
Mat. Sb., 193:10 (2002),  75–98
13. $C^1$-approximation and extension of subharmonic functions
J. Verdera, M. S. Mel'nikov, P. V. Paramonov
Mat. Sb., 192:4 (2001),  37–58
14. On Density Properties of the Riesz Capacities and the Analytic Capacity $\gamma _+$
P. Mattila, P. V. Paramonov
Tr. Mat. Inst. Steklova, 235 (2001),  143–156
15. Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations
P. V. Paramonov, K. Yu. Fedorovskiy
Mat. Sb., 190:2 (1999),  123–144
16. Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
A. Boivin, P. V. Paramonov
Mat. Sb., 189:4 (1998),  3–24
17. Some new criteria for uniform approximability of functions by rational fractions
P. V. Paramonov
Mat. Sb., 186:9 (1995),  97–112
18. On approximation by harmonic polynomials in the $C^1$-norm on compact sets in $\mathbf R^2$
P. V. Paramonov
Izv. RAN. Ser. Mat., 57:2 (1993),  113–124
19. Approximation by harmonic functions in the $C^1$-norm and harmonic $C^1$-content of compact subsets in $\mathbb R^n$
P. M. Gauthier, P. V. Paramonov
Mat. Zametki, 53:4 (1993),  21–30
20. $C^m$-approximations by harmonic polynomials on compact sets in $\mathbb R^n$
P. V. Paramonov
Mat. Sb., 184:2 (1993),  105–128
21. On harmonic approximation in the $C^1$-norm
P. V. Paramonov
Mat. Sb., 181:10 (1990),  1341–1365
22. Control in scanning search for an immovable object
P. V. Paramonov
Avtomat. i Telemekh., 1988, no. 11,  102–112
23. On the possibility of division and involution to a fractional power in the algebra of rational functions
P. V. Paramonov
Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987),  412–420
24. On the interconnection of local and global approximations by holomorphic functions
P. V. Paramonov
Izv. Akad. Nauk SSSR Ser. Mat., 46:1 (1982),  100–116

25. Evgenii Prokof'evich Dolzhenko (on his 80th birthday)
A. I. Aptekarev, P. A. Borodin, B. S. Kashin, Yu. V. Nesterenko, P. V. Paramonov, A. V. Pokrovskii, A. G. Sergeev, A. T. Fomenko
Uspekhi Mat. Nauk, 69:6(420) (2014),  192–196
26. Anatolii Georgievich Vitushkin (on his 70th birthday)
V. K. Beloshapka, V. S. Vladimirov, A. A. Gonchar, E. P. Dolzhenko, N. G. Kruzhilin, V. V. Napalkov, P. V. Paramonov, A. G. Sergeev, P. L. Ul'yanov, E. M. Chirka
Uspekhi Mat. Nauk, 57:1(343) (2002),  179–184

Presentations in Math-Net.Ru
1. $C^m$-reflection of harmonic functions over plane Jordan curves
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 22, 2017 16:45
2. Uniform approximation by harmonic functions on compact sets in ${\mathbb R}^2$
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
April 12, 2017 16:45
3. Some new criteria for uniform approximability by harmonic functions on compact sets in $\mathbb R^2$ and harmonic capacities
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
March 6, 2017 17:00
4. Criteria for individual $C^m$-approximability of functions by solutions of second-order
P. V. Paramonov
Traditional winter session MIAN–POMI devoted to the topic "Complex analysis"
December 21, 2015 14:40   
5. Approximate partition of unity via a special system of exponents
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
March 4, 2015 16:45
6. Uniform approximation by harmonic functions: reduction from $\mathbb R^2$ to $\mathbb R^3$
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 5, 2014 16:45
7. $C^m$-приближения гармоническими функциями в ${\mathbb R}^n$
P. V. Paramonov
One-day conference "Complex Analysis and Geometry" dedicated to the memory of A. G. Vituskin
October 7, 2014 10:30   
8. Lipschitz subharmonic extensions of Walsh type: necessary conditions
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
May 19, 2014 18:00
9. Smooth subharmonic extensions of Runge and Walsh types on open Riemann surfaces
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
March 5, 2014 16:45
10. Criteria for $C^m$ -approximability by bianalytic functions on plane compact sets
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
February 10, 2014 18:00
11. Smooth subharmonic extensions of Runge and Walsh types on open Riemann surfaces
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
January 20, 2014 18:00
12. $\mathbb C^m$-subharmonic extension of Runge from closed to open sets in $\mathbb R^n$
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
October 17, 2011 18:00
13. $C^m$-extension of subharmonic functions
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
October 5, 2011 16:45
14. On uniform approximation by harmonic functions on compact sets in $\mathbb R^3$
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
March 28, 2011 18:00
15. $C^m$-extension of subharmonic functions
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
February 15, 2010 18:00

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017