Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2018
23 июля 2018 г. 11:15–12:30, г. Дубна, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Конечномерные алгебры и действия групп, занятие 3

И. В. Аржанцев

Количество просмотров:
Эта страница:505
Видеофайлы:124

И. В. Аржанцев



Аннотация: В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая. На последней лекции мы поговорим о действиях с открытой орбитой коммутативных групп матриц на различных проективных многообразиях (грассманианах и многообразиях флагов, взвешенных проективных пространствах) и сформулируем несколько нерешенных проблем. Предполагается, что слушатели знакомы с комплексными числами и основами линейной алгебры. Все остальные понятия будут определены и проиллюстрированы на примерах.

Website: https://www.mccme.ru/dubna/2018/courses/arjantsev.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025