RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2014
24 июля 2014 г. 15:30, г. Дубна
 


Нестандартный анализ. Занятие 2

М. Ф. Прохорова
Видеозаписи:
Flash Video 503.8 Mb
MP4 503.8 Mb

Количество просмотров:
Эта страница:295
Видеофайлы:134

М. Ф. Прохорова


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Все физики и многие математики любят говорить о «бесконечно малых приращениях параметра», «бесконечно больших значениях функции» и так далее. Однако математики при этом обычно подразумевают возможность формализовать свои рассуждения, рассматривая сходящуюся к нулю последовательность или неограниченно возрастающую функцию («для любого $\varepsilon>0$ существует $\delta>0$» и так далее). Перевод интуитивно понятных «бесконечно малых» на язык «$\varepsilon$$\delta$» зачастую бывает очень утомителен. Нестандартный анализ, придуманный в 1960 году Абрахамом Робинсоном, позволяет обращаться с бесконечно малыми и бесконечно большими величинами как с обычными числами (и это лишь малая часть того, что он позволяет делать).
С тех пор возникли разные подходы к построению нестандартного анализа. Я расскажу про один из них: теорию внутренних множеств (IST = Internal Set Theory) Эдварда Нельсона. В этой теории к обычной теории множеств добавляется новое свойство (предикат) «стандартности», то есть про объект мы теперь можем сказать, является ли он стандартным.
Например: $100500$, $\pi$, $e$, $2\pi/e$ и так далее – стандартные числа, а вот бесконечно большие и бесконечно маленькие числа стандартными не являются (но существуют!). Логарифм и синус – стандартные функции, но существуют и нестандартные.
Взаимоотношения этого нового свойства «стандартности» с обычной теорией множеств регулируются тремя дополнительными аксиомами: идеализации (I), стандартизации (S) и переноса (T). При этом все теоремы «обычной» математики остаются верными (а неверных теорем не возникает), но у нас появляется дополнительный инструмент для их доказательства, а также расширяются выразительные возможности языка.
Я покажу, как использовать этот новый язык, на конкретных простых примерах. В частности, мы обсудим понятия предела, непрерывности, производной, интеграла, компактности и т.д., а также научимся решать «стандартные» задачи, используя «нестандартные» методы.
От слушателей требуется владение понятиями предела, непрерывности, производной. Желательно знакомство с элементарной теорией множеств.

Website: http://www.mccme.ru/dubna/2014/courses/prokhorova.htm
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017