Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2021
20 июля 2021 г. 11:15, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Забытая теорема Кокстера и объёмы неевклидовых многогранников. Семинар 1

Д. Г. Руденко

Количество просмотров:
Эта страница:448
Видеофайлы:161
Youtube:

Д. Г. Руденко



Аннотация: В работе «Pentagramma Mirificum» Гаусс нашел удивительное соответствие между прямоугольными треугольниками и конфигурациями пятерок точек на проективной прямой. Трехмерным аналогом прямоугольного треугольника является ортосхема: тетраэдр, грани которого являются прямоугольными треугольниками.
В замечательной (и забытой!) статье «On Schläfli’s generalization of Napier’s pentagramma mirificum» Кокстер нашел многомерное обобщение соответствия Гаусса.
В первых трех лекциях я расскажу о соответствии Кокстера. В последней лекции я объясню связь этого сюжета с современной математикой: полилогарифмами и теорией мотивов.
    Программа курса
  • Соответствие Кокстера в размерности 2: Pentagramma Mirificum (результаты Непера, Гаусса и Кэли).
  • Модель Клейна неевклидовой геометрии и ортосхемы.
  • Теорема Кокстера.
  • Объёмы неевклидовых многогранников, полилогарифмы и теорема Бома.

Пререквизиты: от слушателей предполагается знакомство с линейной алгеброй и (желательно) с основами неевклидовой и проективной геометрии на плоскости.

Website: https://mccme.ru/dubna/2021/courses/rudenko.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025