Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 4, Pages 31–52 (Mi fpm1063)  

This article is cited in 23 scientific papers (total in 23 papers)

Cyclic projectors and separation theorems in idempotent convex geometry

S. Gauberta, S. N. Sergeevb

a French National Institute for Research in Computer Science and Automatic Control, INRIA Paris - Rocquencourt Research Centre
b M. V. Lomonosov Moscow State University
References:
Abstract: Semimodules over idempotent semirings like the max-plus or tropical semiring have much in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of the $n$-fold Cartesian product of the max-plus semiring: It is known that one can separate a vector from a closed subsemimodule that does not contain it. Here we establish a more general separation theorem, which applies to any finite collection of closed subsemimodules with a trivial intersection. The proof of this theorem involves specific nonlinear operators, called here cyclic projectors on idempotent semimodules. These are analogues of the cyclic nearest-point projections known in convex analysis. We obtain a theorem that characterizes the spectrum of cyclic projectors on idempotent semimodules in terms of a suitable extension of Hilbert's projective metric. We also deduce as a corollary of our main results the idempotent analogue of Helly's theorem.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 155, Issue 6, Pages 815–829
DOI: https://doi.org/10.1007/s10958-008-9243-8
Bibliographic databases:
UDC: 512.643+512.558
Language: Russian
Citation: S. Gaubert, S. N. Sergeev, “Cyclic projectors and separation theorems in idempotent convex geometry”, Fundam. Prikl. Mat., 13:4 (2007), 31–52; J. Math. Sci., 155:6 (2008), 815–829
Citation in format AMSBIB
\Bibitem{GauSer07}
\by S.~Gaubert, S.~N.~Sergeev
\paper Cyclic projectors and separation theorems in idempotent convex geometry
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 4
\pages 31--52
\mathnet{http://mi.mathnet.ru/fpm1063}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2366235}
\zmath{https://zbmath.org/?q=an:1173.47045}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 155
\issue 6
\pages 815--829
\crossref{https://doi.org/10.1007/s10958-008-9243-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57349116010}
Linking options:
  • https://www.mathnet.ru/eng/fpm1063
  • https://www.mathnet.ru/eng/fpm/v13/i4/p31
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025