Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 8, Pages 17–41 (Mi fpm1098)  

Geometric approach to stable homotopy groups of spheres. Kervaire invariants. II

P. M. Akhmet'ev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We present an approach to the Kervaire-invariant-one problem. The notion of the geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control of self-intersection of a skew-framed immersion and the notion of the $(\mathbb Z/2\oplus\mathbb Z/4)$-structure on the self-intersection manifold of a $\mathbf D_4$-framed immersion are introduced. It is shown that a skew-framed immersion $f\colon M^{\frac{3n+q}4}\looparrowright\mathbb R^n$, $0<q\ll n$ (in the $(\frac{3n}4+\varepsilon)$-range) admits a geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control if the characteristic class of the skew-framing of this immersion admits a retraction of the order $q$, i.e., there exists a mapping $\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}$ such that this composition $I\circ\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}\to\mathbb R\mathrm P^\infty$ is the characteristic class of the skew-framing of $f$. Using the notion of $(\mathbb Z/2\oplus\mathbb Z/2)$-control, we prove that for a sufficiently large $n$, $n=2^l-2$, an arbitrary immersed $\mathbf D_4$-framed manifold admits in the regular cobordism class (modulo odd torsion) an immersion with a $(\mathbb Z/2\oplus\mathbb Z/4)$-structure.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 6, Pages 761–776
DOI: https://doi.org/10.1007/s10958-009-9468-1
Bibliographic databases:
UDC: 515.164
Language: Russian
Citation: P. M. Akhmet'ev, “Geometric approach to stable homotopy groups of spheres. Kervaire invariants. II”, Fundam. Prikl. Mat., 13:8 (2007), 17–41; J. Math. Sci., 159:6 (2009), 761–776
Citation in format AMSBIB
\Bibitem{Akh07}
\by P.~M.~Akhmet'ev
\paper Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 8
\pages 17--41
\mathnet{http://mi.mathnet.ru/fpm1098}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2475579}
\zmath{https://zbmath.org/?q=an:1182.55013}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 159
\issue 6
\pages 761--776
\crossref{https://doi.org/10.1007/s10958-009-9468-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349181358}
Linking options:
  • https://www.mathnet.ru/eng/fpm1098
  • https://www.mathnet.ru/eng/fpm/v13/i8/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025