|
|
Fundamentalnaya i Prikladnaya Matematika, 2009, Volume 15, Issue 7, Pages 235–243
(Mi fpm1281)
|
|
|
|
Radicals and $l$-modules
N. E. Shavgulidze M. V. Lomonosov Moscow State University
Abstract:
We show that for any special class of $l$-modules, we can define a special class of $l$-rings. We prove that the special radical of an $l$-ring $R$ can be represented as the intersection of the $l$-annihilators of $l$-modules over $R$ belonging to the special class. The prime radical of an $l$-ring $R$ can be represented as the intersection of the $l$-annihilators of $l$-prime $l$-modules over $R$.
Citation:
N. E. Shavgulidze, “Radicals and $l$-modules”, Fundam. Prikl. Mat., 15:7 (2009), 235–243; J. Math. Sci., 169:5 (2010), 717–723
Linking options:
https://www.mathnet.ru/eng/fpm1281 https://www.mathnet.ru/eng/fpm/v15/i7/p235
|
| Statistics & downloads: |
| Abstract page: | 302 | | Full-text PDF : | 140 | | References: | 61 | | First page: | 1 |
|