Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 939–951 (Mi fpm130)  

Convergence exponent of singular integral in generalized Hilbert–Kamke problem

A. Zrein
References:
Abstract: In this article we find exact value of the convergence exponent of singular integral in the problem of simultaneous representation of increasing set of natural numbers $N_1,\ldots,N_r$ by sum of terms $[x^{n_1+\theta}],[x^{n_2+\theta}],\ldots,[x^{n_r+\theta}]$ ($n_1<n_2<\ldots<n_r$ — natural numbers, $0\leq\theta\leq1$). We consider integral:
$$ \theta_0=\int\limits_{\mathbb R^r}|I(\alpha_1,\ldots,\alpha_r)|^k\,d\alpha_1\ldots d\alpha_r, $$
where $k$ is an unrestricted index and
$$ I(\alpha_1,\ldots,\alpha _r)=\int\limits_{0}^{1}\exp\biggl\{2\pi i\sum_{j=1}^{r}\alpha_jx^{n_j+\theta}\biggr\}\,dx. $$
It is proved that $\theta_0$ converges when $k>k_0$ and diverges when $k\leq k_0$ where
$$ k_0=\max \left\{n_1+\cdots+n_r+r\theta,\frac{r(r+1)}{2}+1\right\}. $$
Received: 01.03.1995
Bibliographic databases:
UDC: 511.336.6
Language: Russian
Citation: A. Zrein, “Convergence exponent of singular integral in generalized Hilbert–Kamke problem”, Fundam. Prikl. Mat., 1:4 (1995), 939–951
Citation in format AMSBIB
\Bibitem{Zre95}
\by A.~Zrein
\paper Convergence exponent of singular integral in generalized Hilbert--Kamke problem
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 939--951
\mathnet{http://mi.mathnet.ru/fpm130}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1791621}
\zmath{https://zbmath.org/?q=an:0874.11057}
Linking options:
  • https://www.mathnet.ru/eng/fpm130
  • https://www.mathnet.ru/eng/fpm/v1/i4/p939
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025