Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 2, Pages 129–137 (Mi fpm1313)  

On infinitesimal automorphisms of almost contact metric lattices

N. A. Tyapin

Penza State Pedagogical University
References:
Abstract: In this paper, three-dimensional maximum mobile almost contact manifolds are considered. In a special frame, we have obtained the form of structural objects for the case of constant $\varphi $-analytic curvature $H =-3$ of the first and also second and third classes of the Tanno theorem. Basis vector field of the Lie algebra of infinitesimal automorphisms for each of the considered structures and their commutators are found.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 5, Pages 735–741
DOI: https://doi.org/10.1007/s10958-011-0503-7
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: N. A. Tyapin, “On infinitesimal automorphisms of almost contact metric lattices”, Fundam. Prikl. Mat., 16:2 (2010), 129–137; J. Math. Sci., 177:5 (2011), 735–741
Citation in format AMSBIB
\Bibitem{Tya10}
\by N.~A.~Tyapin
\paper On infinitesimal automorphisms of almost contact metric lattices
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 2
\pages 129--137
\mathnet{http://mi.mathnet.ru/fpm1313}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2786523}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 5
\pages 735--741
\crossref{https://doi.org/10.1007/s10958-011-0503-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052370908}
Linking options:
  • https://www.mathnet.ru/eng/fpm1313
  • https://www.mathnet.ru/eng/fpm/v16/i2/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025