Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 2, Pages 163–181 (Mi fpm1317)  

This article is cited in 2 scientific papers (total in 2 papers)

Lie jets and symmetries of prolongations of geometric objects

V. V. Shurygin

Kazan State University
Full-text PDF (213 kB) Citations (2)
References:
Abstract: The Lie jet $\mathcal L_\theta\lambda$ of a field of geometric objects $\lambda$ on a smooth manifold $M$ with respect to a field $\theta$ of Weil $\mathbf A$-velocities is a generalization of the Lie derivative $\mathcal L_v\lambda$ of a field $\lambda$ with respect to a vector field $v$. In this paper, Lie jets $\mathcal L_\theta\lambda$ are applied to the study of $\mathbf A$-smooth diffeomorphisms on a Weil bundle $T^\mathbf AM$ of a smooth manifold $M$, which are symmetries of prolongations of geometric objects from $M$ to $T^\mathbf AM$. It is shown that vanishing of a Lie jet $\mathcal L_\theta\lambda$ is a necessary and sufficient condition for the prolongation $\lambda^\mathbf A$ of a field of geometric objects $\lambda$ to be invariant with respect to the transformation of the Weil bundle $T^\mathbf AM$ induced by the field $\theta$. The case of symmetries of prolongations of fields of geometric objects to the second-order tangent bundle $T^2M$ are considered in more detail.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 5, Pages 758–771
DOI: https://doi.org/10.1007/s10958-011-0507-3
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: V. V. Shurygin, “Lie jets and symmetries of prolongations of geometric objects”, Fundam. Prikl. Mat., 16:2 (2010), 163–181; J. Math. Sci., 177:5 (2011), 758–771
Citation in format AMSBIB
\Bibitem{Shu10}
\by V.~V.~Shurygin
\paper Lie jets and symmetries of prolongations of geometric objects
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 2
\pages 163--181
\mathnet{http://mi.mathnet.ru/fpm1317}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2786527}
\elib{https://elibrary.ru/item.asp?id=16350324}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 5
\pages 758--771
\crossref{https://doi.org/10.1007/s10958-011-0507-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052380666}
Linking options:
  • https://www.mathnet.ru/eng/fpm1317
  • https://www.mathnet.ru/eng/fpm/v16/i2/p163
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025