Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 5, Pages 31–39 (Mi fpm1335)  

This article is cited in 1 scientific paper (total in 1 paper)

Remarks on linear independence of $q$-harmonic series

P. Bundschuh

University of Cologne, Germany
Full-text PDF (139 kB) Citations (1)
References:
Abstract: For any rational integer $q$, $|q|>1$, the linear independence over $\mathbb Q$ of the numbers $1$, $\zeta_q(1)$, and $\zeta_{-q}(1)$ is proved; here $\zeta_q(1)=\sum_{n=1}^\infty\frac1{q^n-1}$ is so-called $q$-harmonic series or $q$-zeta-value at the point $1$. Besides this, a measure of linear independence of these numbers is established.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 180, Issue 5, Pages 550–555
DOI: https://doi.org/10.1007/s10958-012-0653-2
Bibliographic databases:
Document Type: Article
UDC: 511.462
Language: Russian
Citation: P. Bundschuh, “Remarks on linear independence of $q$-harmonic series”, Fundam. Prikl. Mat., 16:5 (2010), 31–39; J. Math. Sci., 180:5 (2012), 550–555
Citation in format AMSBIB
\Bibitem{Bun10}
\by P.~Bundschuh
\paper Remarks on linear independence of $q$-harmonic series
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 5
\pages 31--39
\mathnet{http://mi.mathnet.ru/fpm1335}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2804890}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 180
\issue 5
\pages 550--555
\crossref{https://doi.org/10.1007/s10958-012-0653-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855856346}
Linking options:
  • https://www.mathnet.ru/eng/fpm1335
  • https://www.mathnet.ru/eng/fpm/v16/i5/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025