Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 5, Pages 49–59 (Mi fpm1337)  

This article is cited in 1 scientific paper (total in 1 paper)

On the equivalence of Beukers-type and Sorokin-type multiple integrals

C. Viola

University of Pisa, Italy
Full-text PDF (123 kB) Citations (1)
References:
Abstract: It is well known that a triple Beukers-type integral, as defined by G. Rhin and C. Viola, can be transformed into a suitable triple Sorokin-type integral. I will discuss possible extensions to the $n$-dimensional case of a similar equivalence between suitably defined Beukers-type and Sorokin-type multiple integrals, with consequences on the arithmetical structure of such integrals as linear combinations of zeta-values with rational coefficients.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 180, Issue 5, Pages 561–568
DOI: https://doi.org/10.1007/s10958-012-0655-0
Bibliographic databases:
Document Type: Article
UDC: 511.4
Language: Russian
Citation: C. Viola, “On the equivalence of Beukers-type and Sorokin-type multiple integrals”, Fundam. Prikl. Mat., 16:5 (2010), 49–59; J. Math. Sci., 180:5 (2012), 561–568
Citation in format AMSBIB
\Bibitem{Vio10}
\by C.~Viola
\paper On the equivalence of Beukers-type and Sorokin-type multiple integrals
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 5
\pages 49--59
\mathnet{http://mi.mathnet.ru/fpm1337}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2804892}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 180
\issue 5
\pages 561--568
\crossref{https://doi.org/10.1007/s10958-012-0655-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855821924}
Linking options:
  • https://www.mathnet.ru/eng/fpm1337
  • https://www.mathnet.ru/eng/fpm/v16/i5/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025