|
|
Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 5, Pages 93–101
(Mi fpm1340)
|
|
|
|
On inhomogeneous Diophantine approximation and Hausdorff dimension
M. Laurent Institut de Mathématiques de Luminy, France
Abstract:
Let $\Gamma=\mathbf ZA+\mathbf Z^n\subset\mathbf R^n$ be a dense subgroup of rank $n+1$ and let $\hat\omega(A)$ denote the exponent of uniform simultaneous rational approximation to the generating point $A$. For any real number $v\ge\hat\omega(A)$, the Hausdorff dimension of the set $\mathcal B_v$ of points in $\mathbf R^n$ that are $v$-approximable with respect to $\Gamma$ is shown to be equal to $1/v$.
Citation:
M. Laurent, “On inhomogeneous Diophantine approximation and Hausdorff dimension”, Fundam. Prikl. Mat., 16:5 (2010), 93–101; J. Math. Sci., 180:5 (2012), 592–598
Linking options:
https://www.mathnet.ru/eng/fpm1340 https://www.mathnet.ru/eng/fpm/v16/i5/p93
|
|