Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 1, Pages 223–232 (Mi fpm1398)  

Regular $S$-acts with primitive normal and antiadditive theories

A. A. Stepanova, G. I. Baturin

Far Eastern Federal University
References:
Abstract: In this work, we investigate the commutative monoids over which the axiomatizable class of regular $S$-acts is primitive normal and antiadditive. We prove that the primitive normality of an axiomatizable class of regular $S$-acts over the commutative monoid $S$ is equivalent to the antiadditivity of this class and it is equivalent to the linearity of the order on a semigroup $R$ such that an $S$-act $_SR$ is a maximal (under the inclusion) regular subact of the $S$-act $_SS$.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 3, Pages 497–503
DOI: https://doi.org/10.1007/s10958-012-0931-z
Bibliographic databases:
Document Type: Article
UDC: 510.67+512.56
Language: Russian
Citation: A. A. Stepanova, G. I. Baturin, “Regular $S$-acts with primitive normal and antiadditive theories”, Fundam. Prikl. Mat., 17:1 (2012), 223–232; J. Math. Sci., 185:3 (2012), 497–503
Citation in format AMSBIB
\Bibitem{SteBat12}
\by A.~A.~Stepanova, G.~I.~Baturin
\paper Regular $S$-acts with primitive normal and antiadditive theories
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 1
\pages 223--232
\mathnet{http://mi.mathnet.ru/fpm1398}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 185
\issue 3
\pages 497--503
\crossref{https://doi.org/10.1007/s10958-012-0931-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866329082}
Linking options:
  • https://www.mathnet.ru/eng/fpm1398
  • https://www.mathnet.ru/eng/fpm/v17/i1/p223
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :181
    References:98
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025