Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 7, Pages 97–115 (Mi fpm1459)  

This article is cited in 1 scientific paper (total in 1 paper)

Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings

O. V. Kamlovskii

Certification Research Center
Full-text PDF (205 kB) Citations (1)
References:
Abstract: We establish bounds for the number of occurrences of elements on segments of linear recurrence sequences of vectors over Galois rings. We use the method of exponential sums for this problem. We improve known results with the help of a new class of exponential sums.
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 197, Issue 4, Pages 512–524
DOI: https://doi.org/10.1007/s10958-014-1731-4
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: O. V. Kamlovskii, “Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings”, Fundam. Prikl. Mat., 17:7 (2012), 97–115; J. Math. Sci., 197:4 (2014), 512–524
Citation in format AMSBIB
\Bibitem{Kam12}
\by O.~V.~Kamlovskii
\paper Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 7
\pages 97--115
\mathnet{http://mi.mathnet.ru/fpm1459}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 197
\issue 4
\pages 512--524
\crossref{https://doi.org/10.1007/s10958-014-1731-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893946965}
Linking options:
  • https://www.mathnet.ru/eng/fpm1459
  • https://www.mathnet.ru/eng/fpm/v17/i7/p97
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025