Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 1, Pages 63–74 (Mi fpm1489)  

This article is cited in 2 scientific papers (total in 2 papers)

Almost primitive elements of free Lie algebras of small ranks

A. V. Klimakov

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (165 kB) Citations (2)
References:
Abstract: Let $K$ be a field, $X=\{x_1,\ldots,x_n\}$, and let $L(X)$ be the free Lie algebra over $K$ with the set $X$ of free generators. A. G. Kurosh proved that subalgebras of free nonassociative algebras are free, A. I. Shirshov proved that subalgebras of free Lie algebras are free.
A subset $M$ of nonzero elements of the free Lie algebra $L(X)$ is said to be primitive if there is a set $Y$ of free generators of $L(X)$, $L(X)=L(Y)$, such that $M\subseteq Y$ (in this case we have $|Y|=|X|=n$). Matrix criteria for a subset of elements of free Lie algebras to be primitive and algorithms to construct complements of primitive subsets of elements with respect to sets of free generators have been constructed.
A nonzero element $u$ of the free Lie algebra $L(X)$ is said to be almost primitive if $u$ is not a primitive element of the algebra $L(X)$, but $u$ is a primitive element of any proper subalgebra of $L(X)$ that contains it. A series of almost primitive elements of free Lie algebras has been constructed. In this paper, for free Lie algebras of rank $2$ criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed.
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 201, Issue 4, Pages 450–457
DOI: https://doi.org/10.1007/s10958-014-2005-x
Bibliographic databases:
Document Type: Article
UDC: 512.554
Language: Russian
Citation: A. V. Klimakov, “Almost primitive elements of free Lie algebras of small ranks”, Fundam. Prikl. Mat., 18:1 (2013), 63–74; J. Math. Sci., 201:4 (2014), 450–457
Citation in format AMSBIB
\Bibitem{Kli13}
\by A.~V.~Klimakov
\paper Almost primitive elements of free Lie algebras of small ranks
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 1
\pages 63--74
\mathnet{http://mi.mathnet.ru/fpm1489}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3431765}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 201
\issue 4
\pages 450--457
\crossref{https://doi.org/10.1007/s10958-014-2005-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906094077}
Linking options:
  • https://www.mathnet.ru/eng/fpm1489
  • https://www.mathnet.ru/eng/fpm/v18/i1/p63
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025