Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find







Fundamentalnaya i Prikladnaya Matematika, 1996, Volume 2, Issue 2, Pages 563–594 (Mi fpm154)  

The model theory of divisible modules over a domain

I. Herzoga, V. A. Puninskayab

a University of Notre Dame
b Moscow State Humanitarian Boarding Institute
Abstract: A connected module $M$ over a commutative ring $R$ has a regular generic type iff it is divisible as a module over the integral domain $R/\!\operatorname{ann}_R (M)$. Given a divisible module $M$ over an integral domain $R$, we identify a certain ring $R(M)$ introduced by Facchini as the ring of definable endomorphisms of $M$. If $M$ is strongly minimal, then either $R(M)$ is a field and $M$ an infinite vector space over $R(M)$, or $R(M)$ is a 1-dimensional noetherian domain all of whose simple modules are finite. Matlis' theory of divisible modules over such a ring is applied to characterize the remaining strongly minimal modules as precisely those divisible $R(M)$-modules for which every primary component of the torsion submodule is artinian. We also note that if a superstable module $M$ over a commutative ring $R$ (with no additional structure) has a regular generic type, then the $U$-rank of $M$ is an indecomposable ordinal. If $R$ is a complete local 1-dimensional noetherian domain that is not of Cohen-Macaulay finite representation type, we apply Auslander's theory of almost-split sequences and the compactness of the Ziegler Spectrum to produce a big (non-artinian) torsion divisible pure-injective indecomposable $R$-module and, by elementary duality, a big (not finitely generated) pure-injective indecomposable Cohen-Macaulay $R$-module.
Received: 01.09.1995
Bibliographic databases:
UDC: 512.55+512.55.0
Language: Russian
Citation: I. Herzog, V. A. Puninskaya, “The model theory of divisible modules over a domain”, Fundam. Prikl. Mat., 2:2 (1996), 563–594
Citation in format AMSBIB
\Bibitem{HerPun96}
\by I.~Herzog, V.~A.~Puninskaya
\paper The model theory of divisible modules over a domain
\jour Fundam. Prikl. Mat.
\yr 1996
\vol 2
\issue 2
\pages 563--594
\mathnet{http://mi.mathnet.ru/fpm154}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1793398}
\zmath{https://zbmath.org/?q=an:0927.13001}
Linking options:
  • https://www.mathnet.ru/eng/fpm154
  • https://www.mathnet.ru/eng/fpm/v2/i2/p563
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :289
    References:2
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025