Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 2, Pages 207–211 (Mi fpm1584)  

This article is cited in 1 scientific paper (total in 1 paper)

Arithmetical rings and quasi-projective ideals

A. A. Tuganbaev

National Research University "MPEI", Moscow, Russia
References:
Abstract: It is proved that a commutative ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module can be extended to an endomorphism of the module $A_A$. These results are proved with the use of some general results on invariant arithmetical rings.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 2, Pages 268–271
DOI: https://doi.org/10.1007/s10958-016-2715-3
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “Arithmetical rings and quasi-projective ideals”, Fundam. Prikl. Mat., 19:2 (2014), 207–211; J. Math. Sci., 213:2 (2016), 268–271
Citation in format AMSBIB
\Bibitem{Tug14}
\by A.~A.~Tuganbaev
\paper Arithmetical rings and quasi-projective ideals
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 2
\pages 207--211
\mathnet{http://mi.mathnet.ru/fpm1584}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3431922}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 213
\issue 2
\pages 268--271
\crossref{https://doi.org/10.1007/s10958-016-2715-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84954507134}
Linking options:
  • https://www.mathnet.ru/eng/fpm1584
  • https://www.mathnet.ru/eng/fpm/v19/i2/p207
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :156
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026