Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 2, Pages 227–235 (Mi fpm1587)  

A difference property for functions with bounded second differences on amenable topological groups

A. I. Shternab

a Lomonosov Moscow State University, Moscow, Russia
b Institute of Systems Research (VNIISI), Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Let $G$ be a topological group. For a function $f\colon G\to\mathbb R$ and $h\in G$, the right difference function $\Delta_hf$ is defined by $\Delta_hf(g)=f(gh)-f(g)$ ($g\in G$). A function $H\colon G\to\mathbb R$ is said to be additive if it satisfies the Cauchy functional equation $H(g+h)=H(g)+H(h)$ for every $g, h\in G$. A class $F$ of real-valued functions defined on $G$ is said to have the difference property if, for every function $f\colon G\to\mathbb R$ satisfying $\Delta_hf\in F$ for every $h\in G$, there is an additive function $H$ such that $f-H\in F$. The Erdős conjecture claiming that the class of continuous functions on $\mathbb R$ has the difference property was proved by de Bruijn; later on, Carroll and Koehl proved a similar result for the compact Abelian groups and, under an additional assumption, for the compact metric groups, namely, under the assumption that all functions of the form $\nabla_hf(g)=f(hg)-f(g)$, $g\in G$, are Haar measurable for every $h\in G$. One of the consequences of this assumption is the boundedness of the function $\{g,h\}\mapsto f(gh)-f(g)-f(h)+f(e)$, $g,h\in G$, for every function $f$ on a compact group $G$ for which the difference functions $\Delta_hf$ are continuous for every $h\in G$ and the functions $\nabla_hf$ are Haar measurable for every $h\in G$ ($e$ stands for the identity element of the group $G$). In the present paper, we consider the difference property under the very strong assumption that the function $\{g,h\}\mapsto f(gh)-f(g)-f(h)+f(e)$, $g,h\in G$, is bounded. This assumption enables us to obtain results concerning difference properties not only for functions on groups but also for functions on homogeneous spaces.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 2, Pages 281–286
DOI: https://doi.org/10.1007/s10958-016-2718-0
Bibliographic databases:
Document Type: Article
UDC: 512.546+517.986.6+512.815.1
Language: Russian
Citation: A. I. Shtern, “A difference property for functions with bounded second differences on amenable topological groups”, Fundam. Prikl. Mat., 19:2 (2014), 227–235; J. Math. Sci., 213:2 (2016), 281–286
Citation in format AMSBIB
\Bibitem{Sht14}
\by A.~I.~Shtern
\paper A~difference property for functions with bounded second differences on amenable topological groups
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 2
\pages 227--235
\mathnet{http://mi.mathnet.ru/fpm1587}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3431925}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 213
\issue 2
\pages 281--286
\crossref{https://doi.org/10.1007/s10958-016-2718-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84954543779}
Linking options:
  • https://www.mathnet.ru/eng/fpm1587
  • https://www.mathnet.ru/eng/fpm/v19/i2/p227
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025