Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 3, Pages 181–190 (Mi fpm1658)  

This article is cited in 2 scientific papers (total in 2 papers)

Structure graphs of rings: definitions and first results

A. T. Lipkovski

University of Belgrade, Serbia
Full-text PDF (147 kB) Citations (2)
References:
Abstract: The quadratic Vieta formulas $(x,y)\mapsto(u,v)=(x+y,xy)$ in the complex geometry define a two-fold branched covering $\mathbb C^2\to\mathbb C^2$ ramified over the parabola $u^2=4v$. Thinking about topics considered in Arnold's paper Topological content of the Maxwell theorem on multipole representation of spherical functions, I came to a very simple idea: in fact, these formulas describe the algebraic structure, i.e., addition and multiplication, of the complex numbers. What if, instead of the field of complex numbers, we consider an arbitrary ring? Namely for an arbitrary ring $A$ (commutative, with unity) consider the mapping $\Phi\colon A^2\to A^2$ defined by the Vieta formulas $(x,y)\mapsto(u,v)=(x+y,xy)$. What kind of algebraic properties of the ring itself does this map reflect? At first, it is interesting to investigate simplest finite rings $A=\mathbb Z_m$ and $A=\mathbb Z_k\times\mathbb Z_m$. Recently, it has been very popular to consider graphs associated to rings (the zero-divisor graph, the Cayley graph, etc.). In the present paper, we study the directed graph defined by the Vieta mapping $\Phi$.
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 225, Issue 4, Pages 658–665
DOI: https://doi.org/10.1007/s10958-017-3484-3
Bibliographic databases:
Document Type: Article
UDC: 512.552+511.2
Language: Russian
Citation: A. T. Lipkovski, “Structure graphs of rings: definitions and first results”, Fundam. Prikl. Mat., 20:3 (2015), 181–190; J. Math. Sci., 225:4 (2017), 658–665
Citation in format AMSBIB
\Bibitem{Lip15}
\by A.~T.~Lipkovski
\paper Structure graphs of rings: definitions and first results
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 3
\pages 181--190
\mathnet{http://mi.mathnet.ru/fpm1658}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3519753}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 225
\issue 4
\pages 658--665
\crossref{https://doi.org/10.1007/s10958-017-3484-3}
Linking options:
  • https://www.mathnet.ru/eng/fpm1658
  • https://www.mathnet.ru/eng/fpm/v20/i3/p181
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025