|
|
Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 1, Pages 145–163
(Mi fpm1709)
|
|
|
|
Finite combinatorial generation of metabelian $T$-ideal
V. N. Latyshev Lomonosov Moscow State University
Abstract:
In this work, we develop our idea on the construction of a system of combinatorial generators in a $T$-ideal of a free associative algebra, which is a full analogy of a Gröbner–Shirshov basis in a polynomial ideal. We prove a theorem on multilinear monomials that enables us to establish the existence of a finite set of combinatorial generators in a metabelian $T$-ideal.
Citation:
V. N. Latyshev, “Finite combinatorial generation of metabelian $T$-ideal”, Fundam. Prikl. Mat., 21:1 (2016), 145–163; J. Math. Sci., 233:5 (2018), 702–712
Linking options:
https://www.mathnet.ru/eng/fpm1709 https://www.mathnet.ru/eng/fpm/v21/i1/p145
|
|