Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find







Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 1, Pages 217–224 (Mi fpm1714)  

On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings

D. S. Chistyakov

Moscow State Pedagogical University
References:
Abstract: An $R$-module $A$ is said to be a $\mathrm{UA}$-module if it is not possible to change the addition of $A$ without changing the action of $R$ on $A$. A semigroup $(R,\cdot)$ is said to be a $\mathrm{UA}$-ring if there exists a unique binary operation $+$ making $(R,\cdot,+)$ into a ring. In this paper, the $\mathrm{UA}$-properties of $sp$-groups and their endomorphism rings are studied.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 233, Issue 5, Pages 749–754
DOI: https://doi.org/10.1007/s10958-018-3963-1
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: D. S. Chistyakov, “On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings”, Fundam. Prikl. Mat., 21:1 (2016), 217–224; J. Math. Sci., 233:5 (2018), 749–754
Citation in format AMSBIB
\Bibitem{Chi16}
\by D.~S.~Chistyakov
\paper On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 1
\pages 217--224
\mathnet{http://mi.mathnet.ru/fpm1714}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 233
\issue 5
\pages 749--754
\crossref{https://doi.org/10.1007/s10958-018-3963-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050906933}
Linking options:
  • https://www.mathnet.ru/eng/fpm1714
  • https://www.mathnet.ru/eng/fpm/v21/i1/p217
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :135
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025