Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 6, Pages 169–182 (Mi fpm1858)  

This article is cited in 1 scientific paper (total in 1 paper)

Superintegrable Bertrand magnetic geodesic flows

E. A. Kudryavtseva, S. A. Podlipaev

Moscow State University, Moscow, Russia
Full-text PDF (178 kB) Citations (1)
References:
Abstract: The problem of description of superintegrable systems (i.e., systems with closed trajectories in a certain domain) in the class of rotationally symmetric natural mechanical systems goes back to Bertrand and Darboux. We describe all superintegrable (in a domain of slow motions) systems in the class of rotationally symmetric magnetic geodesic flows. We show that all sufficiently slow motions in a central magnetic field on a two-dimensional manifold of revolution are periodic if and only if the metric has a constant scalar curvature and the magnetic field is homogeneous, i.e., proportional to the area form.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
Russian Foundation for Basic Research 19-01-00775_a
The work was supported by the Programme of the President of RF for support of Leading Scientific Schools (grant No. NSh-6399.2018.1, Agreement No. 075–02–2018-867) and the Russian Foundation for Basic Research (grant No 19-01-00775-a).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 259, Issue 5, Pages 689–698
DOI: https://doi.org/10.1007/s10958-021-05654-2
Document Type: Article
UDC: 514.853+517.938.5
Language: Russian
Citation: E. A. Kudryavtseva, S. A. Podlipaev, “Superintegrable Bertrand magnetic geodesic flows”, Fundam. Prikl. Mat., 22:6 (2019), 169–182; J. Math. Sci., 259:5 (2021), 689–698
Citation in format AMSBIB
\Bibitem{KudPod19}
\by E.~A.~Kudryavtseva, S.~A.~Podlipaev
\paper Superintegrable Bertrand magnetic geodesic flows
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 6
\pages 169--182
\mathnet{http://mi.mathnet.ru/fpm1858}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 259
\issue 5
\pages 689--698
\crossref{https://doi.org/10.1007/s10958-021-05654-2}
Linking options:
  • https://www.mathnet.ru/eng/fpm1858
  • https://www.mathnet.ru/eng/fpm/v22/i6/p169
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025