Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 6, Pages 263–272 (Mi fpm1863)  

This article is cited in 1 scientific paper (total in 1 paper)

Local geometry of the Gromov–Hausdorff metric space and totally asymmetric finite metric spaces

A. M. Filin

Moscow State University, Moscow, Russia
References:
Abstract: In the present paper, we investigate the structure of the metric space $\mathcal M$ of compact metric spaces considered up to an isometry and endowed with the Gromov–Hausdorff metric in a neighbourhood of a finite metric space, whose isometry group is trivial. It is shown that a sufficiently small ball in the subspace of $\mathcal M$ consisting of finite spaces with the same number of points centered at such a space is isometric to a corresponding ball in the space $\mathbb R^N$ endowed with the norm $|(x_1, \dots, x_N ) | = \max\limits_{i} |x_i|$. Also an isometric embedding of a finite metric space into a neighbourhood of a finite asymmetric space in $\mathcal M$ is constructed.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-02-2018-867
Russian Foundation for Basic Research 16-01-00378_a
The work was partly supported by Russian Foundation of Basic Research (Project 19-01-00775a) and by Programme of the President of RF for support of Leading Scientific Schools (Project NSh-6399.2018.1, Agreement 075-02-2018-867).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 259, Issue 5, Pages 754–760
DOI: https://doi.org/10.1007/s10958-021-05657-z
Document Type: Article
UDC: 514.13+519.173
Language: Russian
Citation: A. M. Filin, “Local geometry of the Gromov–Hausdorff metric space and totally asymmetric finite metric spaces”, Fundam. Prikl. Mat., 22:6 (2019), 263–272; J. Math. Sci., 259:5 (2021), 754–760
Citation in format AMSBIB
\Bibitem{Fil19}
\by A.~M.~Filin
\paper Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 6
\pages 263--272
\mathnet{http://mi.mathnet.ru/fpm1863}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 259
\issue 5
\pages 754--760
\crossref{https://doi.org/10.1007/s10958-021-05657-z}
Linking options:
  • https://www.mathnet.ru/eng/fpm1863
  • https://www.mathnet.ru/eng/fpm/v22/i6/p263
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :144
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025