Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2023, Volume 24, Issue 4, Pages 11–29 (Mi fpm1944)  

This article is cited in 1 scientific paper (total in 1 paper)

Gradings of Galois extensions

D. A. Badulin, A. L. Kanunnikov

Lomonosov Moscow State University
Full-text PDF (235 kB) Citations (1)
References:
Abstract: This paper is devoted to the gradings of finite field extensions in which all homogeneous components are one-dimensional. Such gradings are called fine. Kummer extensions are an important class of extensions that admit fine gradings. There always exists a standard grading of Kummer extension based on the Galois group. The paper describes all fine gradings of Kummer extensions, and, in particular, it establishes a criterion for any fine grading to be isomorphic to the standard one. We also investigate gradings of a wider class of Galois extensions that admit fine gradings.
English version:
Journal of Mathematical Sciences (New York), 2024, Volume 284, Issue 4, Pages 417–430
DOI: https://doi.org/10.1007/s10958-024-07360-1
Document Type: Article
UDC: 512.623
Language: Russian
Citation: D. A. Badulin, A. L. Kanunnikov, “Gradings of Galois extensions”, Fundam. Prikl. Mat., 24:4 (2023), 11–29; J. Math. Sci., 284:4 (2024), 417–430
Citation in format AMSBIB
\Bibitem{BadKan23}
\by D.~A.~Badulin, A.~L.~Kanunnikov
\paper Gradings of Galois extensions
\jour Fundam. Prikl. Mat.
\yr 2023
\vol 24
\issue 4
\pages 11--29
\mathnet{http://mi.mathnet.ru/fpm1944}
\transl
\jour J. Math. Sci.
\yr 2024
\vol 284
\issue 4
\pages 417--430
\crossref{https://doi.org/10.1007/s10958-024-07360-1}
Linking options:
  • https://www.mathnet.ru/eng/fpm1944
  • https://www.mathnet.ru/eng/fpm/v24/i4/p11
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025