Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2024, Volume 25, Issue 1, Pages 67–82 (Mi fpm1959)  

On linear transformations preserving cyclicity index of nonnegative matrices

A. V. Vlasovab, A. E. Gutermancab, E. M. Kreinesdab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Bar-Ilan University, Ramat Gan
d Tel Aviv University
References:
Abstract: The cyclicity index of a strongly connected directed graph is the greatest common divisor of all its directed cycles and the cyclicity index of an arbitrary directed graph is the least common multiple of the cyclicity indices of all its maximal strongly connected subgraphs. The cyclicity index of a matrix is equal to the cyclicity index of its critical subgraph, namely, the subgraph of the adjacent graph consisting of all cycles with the maximal average weight. In this paper, we consider surjective linear transformations of non-negative and integer non-negative matrices preserving the cyclicity index. We obtain a complete characterization of such maps and prove that they are automatically injective.
Document Type: Article
UDC: 512.643
Language: Russian
Citation: A. V. Vlasov, A. E. Guterman, E. M. Kreines, “On linear transformations preserving cyclicity index of nonnegative matrices”, Fundam. Prikl. Mat., 25:1 (2024), 67–82
Citation in format AMSBIB
\Bibitem{VlaGutKre24}
\by A.~V.~Vlasov, A.~E.~Guterman, E.~M.~Kreines
\paper On linear transformations preserving cyclicity index of nonnegative matrices
\jour Fundam. Prikl. Mat.
\yr 2024
\vol 25
\issue 1
\pages 67--82
\mathnet{http://mi.mathnet.ru/fpm1959}
Linking options:
  • https://www.mathnet.ru/eng/fpm1959
  • https://www.mathnet.ru/eng/fpm/v25/i1/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025