Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 2, Pages 425–434 (Mi fpm232)  

The direct limits of Lie algebras of the type $A$

D. V. Zhdanovich, I. A. Yanson

M. V. Lomonosov Moscow State University
Abstract: The present paper is devoted to the investigation of some concrete classes of sets of direct limits of simple Lie algebras of the type $A$. We consider two cases. In the first case we give a complete classification of non-isomorphic direct limits. In the second one we obtain a partial description.
Received: 01.06.1995
Bibliographic databases:
UDC: 512.554.32
Language: Russian
Citation: D. V. Zhdanovich, I. A. Yanson, “The direct limits of Lie algebras of the type $A$”, Fundam. Prikl. Mat., 3:2 (1997), 425–434
Citation in format AMSBIB
\Bibitem{ZhdYan97}
\by D.~V.~Zhdanovich, I.~A.~Yanson
\paper The direct limits of Lie algebras of the type~$A$
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 2
\pages 425--434
\mathnet{http://mi.mathnet.ru/fpm232}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1793453}
\zmath{https://zbmath.org/?q=an:0919.17006}
Linking options:
  • https://www.mathnet.ru/eng/fpm232
  • https://www.mathnet.ru/eng/fpm/v3/i2/p425
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :138
    References:2
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025