Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 1, Pages 135–140 (Mi fpm287)  

Research Papers Dedicated to the 100th Anniversary of P. S. Alexandroff's Birth

Weak normality of $2^{X}$ and of $X^{\tau}$

A. P. Kombarov

M. V. Lomonosov Moscow State University
Abstract: It is proved that a weak normality of a space of closed subsets of a countably compact space $X$ implies that $X$ is compact. The example shows that the countable compactness of $X$ is essential. It is also proved that a weak normality of a sufficiently large power of $X$ implies that $X$ is compact.
Received: 01.12.1996
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: A. P. Kombarov, “Weak normality of $2^{X}$ and of $X^{\tau}$”, Fundam. Prikl. Mat., 4:1 (1998), 135–140
Citation in format AMSBIB
\Bibitem{Kom98}
\by A.~P.~Kombarov
\paper Weak normality of~$2^{X}$ and of~$X^{\tau}$
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 1
\pages 135--140
\mathnet{http://mi.mathnet.ru/fpm287}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1786439}
\zmath{https://zbmath.org/?q=an:0959.54014}
Linking options:
  • https://www.mathnet.ru/eng/fpm287
  • https://www.mathnet.ru/eng/fpm/v4/i1/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025