Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 2, Pages 411–416 (Mi fpm385)  

This article is cited in 2 scientific papers (total in 2 papers)

On singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics

V. V. Dubrovskii, L. V. Smirnova

Magnitigorsk State Pedagogical Institute
Full-text PDF (185 kB) Citations (2)
Abstract: The inverse problem for the Laplacian under the Robin's boundary conditions is considered. We prove the following
Theorem. If $q_p$, $p=1,2$, are real twice continuously differentiable functions on $\bar\Omega$ and there exists a subsequence $i_k$ of positive integers such that $\|v_{i_k}(q_p)\|_{L_2(S)}\leq\mathrm{const}|\lambda_{i_k}|^{\beta}$, where $v_i(q_p)$ are orthonormal eigenfunctions of the operator $-\Delta+q$ in the case of Robin's boundary conditions with the eigenvalues $\lambda_i$, $i\in\mathbb N$, and $0\leq\beta<4^{-1}$ then there exists an infinite subsequence $i_{k_{l_m}}$ of positive integers such that the conditions
$$ \lambda_i(q_1)=\lambda_i(q_2),\ \ i\neq i_{k_{l_m}},\quad v_i(q_1)|_S=v_i(q_2)|_S,\ \ i\neq i_{k_{l_m}}, $$
imply $q_1=q_2$.
Received: 01.04.1996
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: V. V. Dubrovskii, L. V. Smirnova, “On singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics”, Fundam. Prikl. Mat., 5:2 (1999), 411–416
Citation in format AMSBIB
\Bibitem{DubSmi99}
\by V.~V.~Dubrovskii, L.~V.~Smirnova
\paper On~singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 2
\pages 411--416
\mathnet{http://mi.mathnet.ru/fpm385}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1803591}
\zmath{https://zbmath.org/?q=an:0958.35146}
Linking options:
  • https://www.mathnet.ru/eng/fpm385
  • https://www.mathnet.ru/eng/fpm/v5/i2/p411
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025