Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 8, Pages 223–231 (Mi fpm39)  

The description of zero divisors in monoid of semigroup varieties under wreath product

A. V. Tishchenko

Finance Academy under the Government of the Russian Federation
References:
Abstract: It follows from the author's results published in 1999 that the wreath product of any two overcommutative semigroup varieties coincides with the variety S of all semigroups and S is the zero of the monoid MV of all semigroup varieties under the wreath product of varieties. In this paper, we give a full description of all cases under which the wreath product of two semigroup varieties equals S.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 2, Pages 292–297
DOI: https://doi.org/10.1007/s10958-008-9052-0
Bibliographic databases:
UDC: 512.536
Language: Russian
Citation: A. V. Tishchenko, “The description of zero divisors in monoid of semigroup varieties under wreath product”, Fundam. Prikl. Mat., 12:8 (2006), 223–231; J. Math. Sci., 152:2 (2008), 292–297
Citation in format AMSBIB
\Bibitem{Tis06}
\by A.~V.~Tishchenko
\paper The description of zero divisors in monoid of semigroup varieties under wreath product
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 8
\pages 223--231
\mathnet{http://mi.mathnet.ru/fpm39}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2314034}
\zmath{https://zbmath.org/?q=an:1163.20037}
\elib{https://elibrary.ru/item.asp?id=11143846}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 2
\pages 292--297
\crossref{https://doi.org/10.1007/s10958-008-9052-0}
\elib{https://elibrary.ru/item.asp?id=13596918}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50249165293}
Linking options:
  • https://www.mathnet.ru/eng/fpm39
  • https://www.mathnet.ru/eng/fpm/v12/i8/p223
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025